1.Anti-rheumatoid arthritic effect of volatile components in notopterygium incisum in rats via anti-inflammatory and anti-angiogenic activities.
Jian-Ping BI ; Ping LI ; Xi-Xi XU ; Ting WANG ; Fei LI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(12):926-935
Notopterygium incisum (QH) has been used for the treatment of rheumatoid arthritis (RA), and volatile oils may be its mainly bioactive constituents. The present study was designed to analyze the volatile compounds in QH and to determine the anti-arthritic capacity of Notopterygium volatile oils and the potential mechanism of action. The volatile compounds analysis was conducted by GC-MS. The anti-arthritic capacity test of the volatile oils was conducted on adjuvant-induced arthritis (AIA) rats. The anti-inflammatory property was tested in NO release model in RAW 264.7 cells. Endothelial cells were used to evaluate the anti-proliferative and anti-tube formative effects. 70 compounds were analyzed by GC-MS in the volatile oils. Notopterygium volatile oils weakened the rat AIA in a dose-dependent manner (2, 4, and 8 g crude drug/kg). The NO production by RAW 264.7 was decreased by more than 50% in Notopterygium volatile oils (5, 15, and 45 μg·mL) pretreated groups. Notopterygium volatile oils also inhibited EAhy926 cell proliferation and further delayed EAhy926 cell capillary tube formation in a concentration-dependent manner. The anti-NO productive, anti-proliferative, and anti-tube formative effects of Notopterygium volatile oils strongly suggested that the therapeutic effect of QH in AIA might be related to the potent anti-inflammatory and anti-angiogenic capacities of the volatile oils.
Angiogenesis Inhibitors
;
administration & dosage
;
chemistry
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Apiaceae
;
chemistry
;
Arthritis, Experimental
;
drug therapy
;
immunology
;
physiopathology
;
Cell Proliferation
;
drug effects
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
Gas Chromatography-Mass Spectrometry
;
Male
;
Mice
;
Nitric Oxide
;
immunology
;
Oils, Volatile
;
administration & dosage
;
chemistry
;
RAW 264.7 Cells
;
Rats
;
Rats, Sprague-Dawley
2.Clinical significance of fractional exhaled nitric oxide combined with in vitro allergen test in identifying children at a high risk of asthma among those with recurrent wheezing.
Wei-Peng HOU ; Ya-Jie WANG ; Li-Hong QIAO ; Hui-Li SHEN
Chinese Journal of Contemporary Pediatrics 2017;19(9):979-982
OBJECTIVETo investigate the clinical value of combined determination of in vitro allergens and fractional exhaled nitric oxide (FeNO) in indentifying children at a high risk of asthma among those with recurrent wheezing.
METHODSA total of 148 children with recurrent wheezing (0.5-6 years old) were enrolled as study subjects, and 80 healthy children who underwent physical examination were enrolled as the control group. Pharmacia UniCAP immunoassay analyzer was used to measure specific immunoglobulin E (sIgE). Nano Coulomb Nitric Oxide Analyzer was used to measure FeNO. The asthma predictive index (API) was evaluated.
RESULTSThe recurrent wheezing group had a significantly higher proportion of children with positive sIgE than the control group [68.9% (102/148) vs 11.3% (9/80); P<0.05]. The recurrent wheezing group also had significantly higher levels and positive rate of FeNO than the control group (P<0.05). The overall positive rate of API in children with wheezing was 32.4%, and the API-positive children had a significantly higher FeNO value than the API-negative children (51±6 ppb vs 13±5 ppb; P<0.05). The detection rate of API was 40.2% (41/102) in positive-sIgE children and 50.1% (38/73) in FeNO-positive children, and there was no significant difference between these two groups. The children with positive sIgE and FeNO had a significantly higher detection rate of API (81.4%) than those with positive sIgE or FeNO (P<0.05).
CONCLUSIONSCombined determination of FeNO and in vitro allergens is more sensitive in detecting children at a high risk of asthma than FeNO or in vitro allergens determination alone and provides a good method for early identification, diagnosis, and intervention of asthma in children.
Allergens ; immunology ; Asthma ; diagnosis ; Breath Tests ; Child ; Child, Preschool ; Female ; Humans ; Immunoglobulin E ; blood ; Infant ; Male ; Nitric Oxide ; analysis ; Recurrence ; Respiratory Sounds ; diagnosis
3.Protosappanin A exerts anti-neuroinflammatory effect by inhibiting JAK2-STAT3 pathway in lipopolysaccharide-induced BV2 microglia.
Li-Chao WANG ; Li-Xi LIAO ; Ming-Bo ZHAO ; Xin DONG ; Ke-Wu ZENG ; Peng-Fei TU
Chinese Journal of Natural Medicines (English Ed.) 2017;15(9):674-679
Microglial activation and resultant neuroinflammatory response are implicated in various brain diseases including Alzheimer's disease and Parkinson's disease. Treatment with anti-neuroinflammatory agents could provide therapeutic benefits for such disorders. Protosappanin A (PTA) is a major bioactive ingredient isolated from Caesalpinia sappan L.. In this work, the anti-neuroinflammatory effects of PTA on LPS-stimulated BV2 cells were investigated and the underlying mechanisms were explored. Results showed that PTA significantly inhibited the production of TNF-α and IL-1β in LPS-activated BV2 microglia. Moreover, the mRNA expressions of IL-6, IL-1β, and MCP-1 were reduced by PTA in a dose-dependent manner. Furthermore, PTA suppressed JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3, as well as STAT3 nuclear translocation against LPS treatment. These observations suggested a novel role for PTA in regulating LPS-induced neuroinflammatory injuries.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Humans
;
Inflammation
;
drug therapy
;
genetics
;
immunology
;
Interleukin-1beta
;
genetics
;
immunology
;
Lipopolysaccharides
;
pharmacology
;
Mice
;
Microglia
;
drug effects
;
immunology
;
Nitric Oxide
;
genetics
;
immunology
;
Phenols
;
pharmacology
;
STAT3 Transcription Factor
;
genetics
;
immunology
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
4.Differences in anti-inflammatory effects between two specifications of Scutellariae Radix in LPS-induced macrophages in vitro.
Qian-Yu CHEN ; Chao-Qun WANG ; Zhi-Wei YANG ; Qi TANG ; Huan-Ran TAN ; Xuan WANG ; Shao-Qing CAI
Chinese Journal of Natural Medicines (English Ed.) 2017;15(7):515-524
Scutellariae Radix (SR), the root of Scutellaria baicalensis Georgi, is used as an antipyretic drug and has been demonstrated to have anti-inflammatory activity. SR is divided into two specifications, "Ku Qin" (KQ) and "Zi Qin" (ZQ), for use against different symptoms (upper energizer heat or lower portion of the triple energizer), according to the theory of traditional Chinese medicine (TCM). However, differences in the efficacies of these two specifications have not been determined. In the present study, we aimed to characterize the differences in the anti-inflammatory activities between KQ and ZQ and to explore how their differences are manifested in lipopolysaccharide (LPS)-induced macrophages. Our results showed that, in RAW264.7 cells (a mouse macrophage cell line derived from ascites), KQ and ZQ displayed anti-inflammatory effects by inhibiting the release of nitric oxide (NO), inducible NOS (iNOS), and nuclear factor-κB (NF-κB) in a dose-dependent manner without distinction. In NR8383 cells (a rat alveolar macrophage cell line), KQ and ZQ displayed similar effects on NO, iNOS, and NF-κB as seen in RAW264.7 cells, but KQ showed a higher inhibition rate for NO and iNOS than that shown by ZQ at the same concentration. These results indicated that there were differences in efficacy between KQ and ZQ in treating lung inflammation. Our findings provided an experimental evidence supporting the different uses of KQ and ZQ in clinic, as noted in ancient herbal records.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Cell Line
;
Lipopolysaccharides
;
pharmacology
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
NF-kappa B
;
genetics
;
immunology
;
Nitric Oxide Synthase Type II
;
genetics
;
immunology
;
RAW 264.7 Cells
;
Rats
;
Scutellaria baicalensis
;
chemistry
5.Structure and immunomodulatory activity of extracellular polysaccharide from Grifola frondosa.
Lirong HAN ; Dai CHENG ; Lirui WANG ; Chunling WANG
Chinese Journal of Biotechnology 2016;32(5):648-656
We aimed at analyzing the structure of extracellular polysaccharide A from Grifola frondosa (EXGFP-A) and testing its immunomodulatory activity. Structural analysis shows that EXGFP-A was a contained α-D-glucoside bond and pyranose ring. GC analysis reveals that EXGFP-A was mainly composed of rhamnose, arabinose, xylose, mannose, glucose, galactose, by the molar ratio of 0.28:0.31:0.30:0.06:7.98:0.61. The results of MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay indicates when EXGFP-A was at a concentration of 80 μg/mL and treatment time of 48 h, RAW264.7 cells proliferation index reached a maximum of 137.5%. Meanwhile, the AO staining showed that EXGFP-A activated RAW264.7 cells and improved the level of intracellular nucleic acid metabolism. In addition, in a certain range of concentration, EXGFP-A was able to increase the release of NO in RAW264.7 cells, and upregulate the mRNA expression of immunological factor TNF-α, IL-1β, IL-6, IL-12, IFN-γ and iNOS of RAW264.7 cells. Our results confirm that EXGFP-A had immunomodulatory activity. Our findings provided scientific basis for the structural analysis and application of Grifola frondosa polysaccharide.
Animals
;
Cytokines
;
metabolism
;
Grifola
;
chemistry
;
Mice
;
Nitric Oxide Synthase Type II
;
metabolism
;
Polysaccharides
;
immunology
;
RAW 264.7 Cells
6.Immune mechanisms of the active ingredients of Chinese medicinal herbs for chronic prostatitis.
Hao WANG ; Yu-chun ZHOU ; Jian-guo XUE
National Journal of Andrology 2016;22(1):63-66
Chronic prostatitis is a common male disease, and its pathogenesis is not yet clear. Most scholars believe that oxidative stress and immune imbalance are the keys to the occurrence and progression of chronic prostatitis. Currently immunotherapy of chronic prostatitis remains in the exploratory stage. This article relates the active ingredients of 5 Chinese medicinal herbs (total glucosides of paeony, tripterigium wilfordii polglycosidium, curcumin, geniposide, and quercetin) for the treatment of chronic prostatitis and their possible action mechanisms as follows: 1) inhibiting the immune response and activation and proliferation of T-cells, and adjusting the proportion of Th1/Th2 cells; 2) upregulating the expression of Treg and enhancing the patient's tolerability; 3) suppressing the activation of the NF-kB factor, reducing the release of iNOS, and further decreasing the release of NO, IL-2 and other inflammatory cytokines, which contribute to the suppression of the immune response; 4) inhibiting the production of such chemokines as MCP-1 and MIP-1α in order to reduce their induction of inflammatory response. Studies on the immune mechanisms of Chinese medicinal herbs in the treatment of chronic prostatitis are clinically valuable for the development of new drugs for this disease.
Chemokines
;
immunology
;
Cytokines
;
immunology
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Immune System
;
drug effects
;
Male
;
NF-kappa B p50 Subunit
;
metabolism
;
Nitric Oxide Synthase Type II
;
metabolism
;
Plants, Medicinal
;
Prostatitis
;
drug therapy
;
immunology
;
T-Lymphocytes, Regulatory
;
drug effects
;
Th1-Th2 Balance
7.A polysaccharide purified from Radix Adenophorae promotes cell activation and pro-inflammatory cytokine production in murine RAW264.7 macrophages.
Jing-Wen LI ; Yang LIU ; Bao-Hui LI ; Yue-Yang WANG ; Hui WANG ; Chang-Lin ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2016;14(5):370-376
Radix Adenophorae, a traditional Chinese medicine, has been reported to have a variety of biological functions. In the present study, a polysaccharide component, Radix Adenophorae Polysaccharide (RAPS), was purified from Radix Adenophorae by decoloring with ADS-7 macroporous adsorption resin, DEAE-52 cellulose ion-exchange chromatography, and Sephacryl S-300HR gel chromatography, with the purity of 98.3% and a molecular weight of 1.8 × 10(4) Da. The cell viability assay and microscopic examination revealed that RAPS promoted the proliferation and activation of macrophages. At 400 μg·mL(-1), RAPS stimulated RAW264.7 cell proliferation by 1.91-fold compared with the control. Meanwhile, RAPS significantly increased the secretion of pro-inflammatory cytokines (TNF-α and IL-6) in a dose-dependent manner in the supernatant of RAW264.7 cell culture as determined by ELISA. At 400 μg·mL(-1), the production of TNF-iα was 20.8-fold higher than that of the control. Simultaneously, the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) were increased in RAW264.7 cells incubated with RAPS, as measured by Griess assay and Western blot analysis. The NO production of cells treated with RAPS (400 μg·mL(-1)) reached 15.8 μmol·L(-1), which was 30.4-fold higher than that of the control (0.53 μmol·L(-1)). These data suggested that RAPS may enhance the immune function and protect against exogenous pathogens by activating macrophages.
Animals
;
Campanulaceae
;
chemistry
;
Cytokines
;
genetics
;
immunology
;
Immunologic Factors
;
pharmacology
;
Interleukin-6
;
genetics
;
immunology
;
Macrophage Activation
;
drug effects
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
Nitric Oxide
;
immunology
;
Plant Extracts
;
pharmacology
;
Polysaccharides
;
pharmacology
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
8.In vitro anti-inflammatory and free radical scavenging activities of flavans from Ilex centrochinensis.
Lu-jun LI ; Li-juan YU ; Yan-ci LI ; Meng-yuan LIU ; Zheng-zhi WU
China Journal of Chinese Materia Medica 2015;40(8):1523-1528
This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
chemistry
;
pharmacology
;
Cell Line
;
Cyclooxygenase 2
;
immunology
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Flavanones
;
chemistry
;
pharmacology
;
Free Radical Scavengers
;
chemistry
;
pharmacology
;
Ilex
;
chemistry
;
Interleukin-6
;
immunology
;
Macrophages
;
drug effects
;
immunology
;
Mice
;
Nitric Oxide
;
immunology
;
Tumor Necrosis Factor-alpha
;
immunology
9.The polysaccharide isolated from Pleurotus nebrodensis (PN-S) shows immune-stimulating activity in RAW264.7 macrophages.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Ya-Nan ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2015;13(5):355-360
A novel Pleurotus nebrodensis polysaccharide (PN-S) was purified and characterized, and its immune-stimulating activity was evaluated in RAW264.7 macrophages. PN-S induced the proliferation of RAW264.7 cells in a dose-dependent manner, as determined by the MTT assay. After exposure to PN-S, the phagocytosis of the macrophages was significantly improved, with remarkable changes in morphology being observed. Flow cytometric analysis demonstrated that PN-S promoted RAW264.7 cells to progress through S and G2/M phases. PN-S treatment enhanced the productions of interleukin-6 (IL-6), nitric oxide (NO), interferon gamma (INF-γ), and tumor necrosis factor-α (TNF-α) in the macrophages, with up-regulation of mRNA expressions of interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), interferon gamma(INF-γ) and tumor necrosis factor-α (TNF-α) being observed in a dose-dependent manner, as measured by qRT-PCR. In conclusion, these results suggest that the purified PN-S can improve immunity by activating macrophages.
Animals
;
Cell Cycle
;
immunology
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Fungal Polysaccharides
;
pharmacology
;
Immunity
;
drug effects
;
Interferon-gamma
;
biosynthesis
;
metabolism
;
Interleukin-6
;
biosynthesis
;
metabolism
;
Macrophages
;
immunology
;
metabolism
;
Mice
;
Nitric Oxide
;
biosynthesis
;
Nitric Oxide Synthase Type II
;
metabolism
;
Pleurotus
;
RNA, Messenger
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Tumor Necrosis Factor-alpha
;
biosynthesis
;
metabolism
;
Up-Regulation
10.Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice.
Hai-Yan CUI ; Chang-Lu WANG ; Yu-Rong WANG ; Zhen-Jing LI ; Mian-Hua CHEN ; Feng-Juan LI ; Yan-Ping SUN
Chinese Journal of Natural Medicines (English Ed.) 2015;13(10):760-766
In the present study, the effects of Pleurotus nebrodensis polysaccharide (PN-S) on the immune functions of immunosuppressed mice were determined. The immunosuppressed mouse model was established by treating the mice with cyclophosphamide (40 mg/kg/2d, CY) through intraperitoneal injection. The results showed that PN-S administration significantly reversed the CY-induced weight loss, increased the thymic and splenic indices, and promoted proliferation of T lymphocyte, B lymphocyte, and macrophages. PN-S also enhanced the activity of natural killer cells and increased the immunoglobulin M (IgM) and immunoglobulin G (IgG) levels in the serum. In addition, PN-S treatment significantly increased the phagocytic activity of mouse peritoneal macrophages. PN-S also increased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and nitric oxide (NOS) in splenocytes. qRT-PCR results also indicated that PN-S increased the mRNA expression of IL-6, TNF-α, INF-γ, and nitric oxide synthase (iNOS) in the splenocytes. These results suggest that PN-S treatment enhances the immune function of immunosuppressed mice. This study may provide a basis for the application of this fungus in adjacent immunopotentiating therapy against cancer and in the treatment of chemotherapy-induced immunosuppression.
Animals
;
Antineoplastic Agents, Alkylating
;
Biological Products
;
pharmacology
;
therapeutic use
;
Cell Line
;
Cyclophosphamide
;
Immunity
;
drug effects
;
Immunologic Factors
;
pharmacology
;
therapeutic use
;
Immunosuppression
;
Interferon-gamma
;
metabolism
;
Interleukin-6
;
metabolism
;
Macrophages
;
drug effects
;
metabolism
;
Male
;
Mice, Inbred BALB C
;
Neoplasms
;
drug therapy
;
immunology
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase Type II
;
metabolism
;
Phagocytosis
;
drug effects
;
Pleurotus
;
chemistry
;
Polysaccharides
;
pharmacology
;
therapeutic use
;
Tumor Necrosis Factor-alpha
;
metabolism

Result Analysis
Print
Save
E-mail