1.Early risk factors for death in neonates with persistent pulmonary hypertension of the newborn treated with inhaled nitric oxide.
Ai-Min QIAN ; Wen ZHU ; Yang YANG ; Ke-Yu LU ; Jia-Li WANG ; Xu CHEN ; Chu-Chu GUO ; Ya-Dong LU ; Hui RONG ; Rui CHNEG
Chinese Journal of Contemporary Pediatrics 2022;24(5):507-513
OBJECTIVES:
To evaluate the early risk factors for death in neonates with persistent pulmonary hypertension of the newborn (PPHN) treated with inhaled nitric oxide (iNO).
METHODS:
A retrospective analysis was performed on 105 infants with PPHN (gestational age ≥34 weeks and age <7 days on admission) who received iNO treatment in the Department of Neonatology, Children's Hospital of Nanjing Medical University, from July 2017 to March 2021. Related general information and clinical data were collected. According to the clinical outcome at discharge, the infants were divided into a survival group with 79 infants and a death group with 26 infants. Univariate and multivariate Cox regression analyses were used to evaluate the risk factors for death in infants with PPHN treated with iNO. The receiver operating characteristic (ROC) curve was used to calculate the cut-off values of the factors in predicting the death risk.
RESULTS:
A total of 105 infants with PPHN treated with iNO were included, among whom 26 died (26/105, 24.8%). The multivariate Cox regression analysis showed that no early response to iNO (HR=8.500, 95%CI: 3.024-23.887, P<0.001), 1-minute Apgar score ≤3 points (HR=10.094, 95%CI: 2.577-39.534, P=0.001), a low value of minimum PaO2/FiO2 within 12 hours after admission (HR=0.067, 95%CI: 0.009-0.481, P=0.007), and a low value of minimum pH within 12 hours after admission (HR=0.049, 95%CI: 0.004-0.545, P=0.014) were independent risk factors for death. The ROC curve analysis showed that the lowest PaO2/FiO2 value within 12 hours after admission had an area under the ROC curve of 0.783 in predicting death risk, with a sensitivity of 84.6% and a specificity of 73.4% at the cut-off value of 50, and the lowest pH value within 12 hours after admission had an area under the ROC curve of 0.746, with a sensitivity of 76.9% and a specificity of 65.8% at the cut-off value of 7.2.
CONCLUSIONS
Infants with PPHN requiring iNO treatment tend to have a high mortality rate. No early response to iNO, 1-minute Apgar score ≤3 points, the lowest PaO2/FiO2 value <50 within 12 hours after admission, and the lowest pH value <7.2 within 12 hours after admission are the early risk factors for death in such infants. Monitoring and evaluation of the above indicators will help to identify high-risk infants in the early stage.
Administration, Inhalation
;
Child
;
Humans
;
Hypertension, Pulmonary/drug therapy*
;
Infant
;
Infant, Newborn
;
Nitric Oxide
;
Persistent Fetal Circulation Syndrome/drug therapy*
;
Retrospective Studies
;
Risk Factors
2.Effect of intermittent versus daily inhalation of budesonide on pulmonary function and fractional exhaled nitric oxide in children with mild persistent asthma.
Zhen-Hua ZHANG ; Wen-Xuan LI ; Xiao-Ming WANG
Chinese Journal of Contemporary Pediatrics 2020;22(8):834-838
OBJECTIVE:
To study the effect of intermittent versus daily inhalation of budesonide on pulmonary function and fractional exhaled nitric oxide (FeNO) in children with mild persistent asthma.
METHODS:
A total of 120 children, aged 6-14 years, with mild persistent asthma who attended the hospital from January 2016 to January 2018 were enrolled. The children were divided into an intermittent inhalation group with 60 children (inhalation of budesonide 200 μg/day for 6 weeks when symptoms of asthma appeared) and a daily inhalation group with 60 children (continuous inhalation of budesonide 200 μg/day) by stratified randomization. The children were followed up at months 3, 6, 9, and 12 of treatment. The two groups were compared in terms of baseline data, changes in FeNO and pulmonary function parameters, amount of glucocorticoid used, number of asthma attacks, and asthma control.
RESULTS:
At the start of treatment, there were no significant differences in baseline data, FeNO, and pulmonary function between the two groups (P>0.05). Over the time of treatment, FeNO gradually decreased and pulmonary function parameters were gradually improved in both groups (P<0.001). Compared with the intermittent inhalation group, the daily inhalation group had a better effect in reducing FeNO and increasing the predicted percentage of forced expiratory volume in 1 second (FEV1%pred) (P<0.001). The inhalation method and treatment time had an interaction effect on FeNO and pulmonary function parameters (P<0.001). In the daily inhalation group, FeNO and lung function parameters were improved rapidly and stabilized after 3 months of treatment, while those in the intermittent inhalation group stabilized after 6 months. After 12 months of treatment, there were no significant differences in the increases in body height and body weight and the degree of disease control between the two groups (P>0.05). Compared with the daily inhalation group, the intermittent inhalation group had a significantly lower amount of budesonide inhaled (P<0.05) and a significantly higher number of asthma attacks (P<0.05).
CONCLUSIONS
Intermittent inhalation and daily inhalation of budesonide can achieve the same level of asthma control in children with mild persistent asthma and both have no influence on the increases in body height and body weight. Daily inhalation of budesonide can produce a better efficiency in reduing FeNO and increasing FEV1%pred. Although intermittent inhalation can reduce the amount of glucocorticoid used, it may lead to a higher risk of asthma attacks.
Administration, Inhalation
;
Adolescent
;
Asthma
;
drug therapy
;
Budesonide
;
therapeutic use
;
Child
;
Forced Expiratory Volume
;
Humans
;
Nitric Oxide
3.A clinical follow-up study of children with well-controlled asthma after withdrawal of low-dose inhaled corticosteroids.
Min ZHANG ; Zhi-Hong WEN ; Cai-Qiong YANG
Chinese Journal of Contemporary Pediatrics 2019;21(5):421-425
OBJECTIVE:
To study the incidence of acute attacks of asthma and dynamic changes in laboratory markers in children with well-controlled asthma after the withdrawal of low-dose inhaled corticosteroids (ICS), and to provide a basis for optimal long-term control regimens for children with asthma.
METHODS:
A total of 63 children with well-controlled asthma were enrolled as subjects. According to their parents' wishes, they were continuously administered with ICS (ICS treatment group; n=35) and without ICS (ICS withdrawal group; n=28). They were followed up for 18 months. The incidence of acute attacks of asthma was evaluated, dynamic monitoring was performed for pulmonary function and fractional exhaled nitric oxide (FeNO), and childhood asthma control test (C-ACT) was performed every three months.
RESULTS:
At 3, 6, 9, and 12 months of follow-up, there was no significant difference in FeNO between the ICS treatment and withdrawal groups (P>0.05). However, at 15 and 18 months of follow-up, the withdrawal group had a significantly higher level of FeNO than the ICS treatment group (P<0.05). There was no significant difference in the C-ACT score between the two groups at all time points of follow-up (P>0.05). At 3, 6, 9, and 12 months of follow-up, there were no significant differences between the two groups in the percentage of forced expiratory volume in 1 second, the ratio of forced expiratory volume in 1 second to forced vital capacity, percentage of predicted maximum mid-expiratory flow (MMEF%), and maximal expiratory flow at 50% of vital capacity (MEF50) (P>0.05), while at 15 and 18 months of follow-up, the ICS treatment group had significantly higher MMEF% and MEF50 than the withdrawal group (P<0.05). During follow-up, 3 children (9%) in the ICS treatment group and 8 (29%) in the withdrawal group experienced acute attacks of asthma (P=0.0495).
CONCLUSIONS
Continuous inhalation of low-dose ICS can maintain the stability of pulmonary function and reduce acute attacks of asthma in children with well-controlled asthma.
Administration, Inhalation
;
Adrenal Cortex Hormones
;
Anti-Asthmatic Agents
;
Asthma
;
Child
;
Follow-Up Studies
;
Forced Expiratory Volume
;
Humans
;
Nitric Oxide
4.Cardamine komarovii flower extract reduces lipopolysaccharide-induced acute lung injury by inhibiting MyD88/TRIF signaling pathways.
Qi CHEN ; Ke-Xin ZHANG ; Tai-Yuan LI ; Xuan-Mei PIAO ; Mei-Lan LIAN ; Ren-Bo AN ; Jun JIANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):461-468
In the present study, we investigated anti-inflammatory effect of Cardamine komarovii flower (CKF) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). We determined the effect of CKF methanolic extracts on LPS-induced pro-inflammatory mediators NO and prostaglandin E2 (PGE2), production of pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6), and related protein expression levels of MyD88/TRIF signaling pathways in peritoneal macrophages (PMs). Nuclear translocation of NF-κB-p65 was analyzed by immunofluorescence. For the in vivo experiments, an ALI model was established to detect the number of inflammatory cells and inflammatory factors (IL-1β, TNF-α, and IL-6) in bronchoalveolar lavage fluid (BALF) of mice. The pathological damage in lung tissues was evaluated through H&E staining. Our results showed that CKF can decrease the production of inflammatory mediators, such as NO and PGE2, by inhibiting their synthesis-related enzymes iNOS and COX-2 in LPS-induced PMs. In addition, CKF can downregulate the mRNA levels of IL-1β, TNF-α, and IL-6 to inhibit the production of inflammatory factors. Mechanism studies indicated that CKF possesses a fine anti-inflammatory effect by regulating MyD88/TRIF dependent signaling pathways. Immunocytochemistry staining showed that the CKF extract attenuates the LPS-induced translocation of NF-kB p65 subunit in the nucleus from the cytoplasm. In vivo experiments revealed that the number of inflammatory cells and IL-1β in BALF of mice decrease after CKF treatment. Histopathological observation of lung tissues showed that CKF can remarkably improve alveolar clearance and infiltration of interstitial and alveolar cells after LPS stimulation. In conclusion, our results suggest that CKF inhibits LPS-induced inflammatory response by inhibiting the MyD88/TRIF signaling pathways, thereby protecting mice from LPS-induced ALI.
Acute Lung Injury
;
chemically induced
;
drug therapy
;
genetics
;
metabolism
;
Adaptor Proteins, Vesicular Transport
;
genetics
;
metabolism
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Cardamine
;
chemistry
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Female
;
Flowers
;
chemistry
;
Humans
;
Lipopolysaccharides
;
adverse effects
;
Male
;
Mice
;
Myeloid Differentiation Factor 88
;
genetics
;
metabolism
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Plant Extracts
;
administration & dosage
;
chemistry
;
Signal Transduction
;
drug effects
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
5.Anti-rheumatoid arthritic effect of volatile components in notopterygium incisum in rats via anti-inflammatory and anti-angiogenic activities.
Jian-Ping BI ; Ping LI ; Xi-Xi XU ; Ting WANG ; Fei LI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(12):926-935
Notopterygium incisum (QH) has been used for the treatment of rheumatoid arthritis (RA), and volatile oils may be its mainly bioactive constituents. The present study was designed to analyze the volatile compounds in QH and to determine the anti-arthritic capacity of Notopterygium volatile oils and the potential mechanism of action. The volatile compounds analysis was conducted by GC-MS. The anti-arthritic capacity test of the volatile oils was conducted on adjuvant-induced arthritis (AIA) rats. The anti-inflammatory property was tested in NO release model in RAW 264.7 cells. Endothelial cells were used to evaluate the anti-proliferative and anti-tube formative effects. 70 compounds were analyzed by GC-MS in the volatile oils. Notopterygium volatile oils weakened the rat AIA in a dose-dependent manner (2, 4, and 8 g crude drug/kg). The NO production by RAW 264.7 was decreased by more than 50% in Notopterygium volatile oils (5, 15, and 45 μg·mL) pretreated groups. Notopterygium volatile oils also inhibited EAhy926 cell proliferation and further delayed EAhy926 cell capillary tube formation in a concentration-dependent manner. The anti-NO productive, anti-proliferative, and anti-tube formative effects of Notopterygium volatile oils strongly suggested that the therapeutic effect of QH in AIA might be related to the potent anti-inflammatory and anti-angiogenic capacities of the volatile oils.
Angiogenesis Inhibitors
;
administration & dosage
;
chemistry
;
Animals
;
Anti-Inflammatory Agents
;
administration & dosage
;
chemistry
;
Apiaceae
;
chemistry
;
Arthritis, Experimental
;
drug therapy
;
immunology
;
physiopathology
;
Cell Proliferation
;
drug effects
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
Gas Chromatography-Mass Spectrometry
;
Male
;
Mice
;
Nitric Oxide
;
immunology
;
Oils, Volatile
;
administration & dosage
;
chemistry
;
RAW 264.7 Cells
;
Rats
;
Rats, Sprague-Dawley
6.Quercetin modulates iron homeostasis and iNOS expression of splenic macrophages in a rat model of iron deficiency anemia.
Maryam MAZHAR ; Nurul KABIR ; Shabana U SIMJEE
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):580-589
Iron deficiency anemia is one of the most common micronutrient deficient conditions around the globe with various consequences, including the weakened immune system. Quercetin is widely distributed bioflavonoid; it has been debated for its dual roles in iron regulation. Quercetin-iron interaction in the body is a complex mechanism which has not been completely understood. The present study aimed to investigate the effect of quercetin on iron supplementation in iron deficiency anemia and on iNOS expression in splenic macrophages. The rat model of iron deficiency anemia was induced by feeding low iron diet to weanling rats for 20 days. The animals were then administered with ferrous sulfate, quercetin, and their combination for 30 days. Blood parameters, histopathological analysis, iron storage, CD68, iNOS and SLC40 expression in rat spleen were investigated. Our results showed that quercetin regulated iron absorption, despite SLC40 down-expression, indicating possible alternate route of iron transport, and that quercetin modulated iNOS production in splenic macrophages.
Anemia, Iron-Deficiency
;
drug therapy
;
genetics
;
metabolism
;
Animals
;
Dietary Supplements
;
analysis
;
Female
;
Homeostasis
;
drug effects
;
Humans
;
Iron
;
deficiency
;
Macrophages
;
drug effects
;
metabolism
;
Nitric Oxide Synthase Type II
;
genetics
;
metabolism
;
Quercetin
;
administration & dosage
;
Rats
;
Rats, Sprague-Dawley
;
Spleen
;
drug effects
;
enzymology
7.Protective effect of urine-derived stem cells on erectile dysfunction in rats with cavernous nerve injury.
Wan-Mei CHEN ; Qi-Yun YANG ; Jun BIAN ; Da-Yu HAN ; De-Hui LAI ; Xiang-Zhou SUN ; Chun-Hua DENG
National Journal of Andrology 2018;24(6):483-490
ObjectiveTo investigate the protective effect of human urine-derived stem cells (USCs) on erectile function and cavernous structure in rats with cavernous nerve injury (CNI).
METHODSSixty adult male SD rats with normal sexual function were randomly divided into four groups of equal number: sham operation, bilateral CNI (BCNI) model control, phosphate buffered saline (PBS), and USC. The BCNI model was established in the latter three groups of rats by clamping the bilateral cavernous nerves. After modeling, the rats in the PBS and USC groups were treated by intracavernous injection of PBS at 200 μl and USCs at 1×106/200 μl PBS respectively for 28 days. Then, the maximum intracavernous pressure (mICP) and the ratio of mICP to mean arterial pressure (mICP/MAP) of the rats were calculated by electrical stimulation of the major pelvic ganglions, the proportion of nNOS- or NF200-positive nerve fibers in the total area of penile dorsal nerves determined by immunohistochemical staining, the levels of endothelial cell marker eNOS, smooth muscle marker α-SMA and collagen I detected by Western blot, and the smooth muscle to collagen ratio and the cell apoptosis rate in the corpus cavernosum measured by Masson staining and TUNEL, respectively.
RESULTSAfter 28 days of treatment, the rats in the USC group, as compared with those in the PBS and BCNI model control groups, showed significant increases in the mICP ([81 ± 9.9] vs [31 ± 8.3] and [33 ± 4.2] mmHg, P <0.05), mICP/MAP ratio (0.72 ± 0.05 vs 0.36 ± 0.03 and 0.35 ± 0.04, P <0.05), the proportions of nNOS-positive nerve fibers ([11.31 ± 4.22]% vs [6.86 ± 3.08]% and [7.29 ± 4.84]% , P <0.05) and NF200-positive nerve fibers in the total area of penile dorsal nerves ([27.31 ± 3.12]% vs [17.38 ± 2.87]% and [19.49 ± 4.92]%, P <0.05), the eNOS/GAPDH ratio (0.52 ± 0.08 vs 0.31 ± 0.06 and 0.33 ± 0.07, P <0.05), and the α-SMA/GAPDH ratio (1.01 ± 0.09 vs 0.36 ± 0.05 and 0.38 ± 0.04, P <0.05), but a remarkable decrease in the collagen I/GAPDH ratio (0.28 ± 0.06 vs 0.68 ± 0.04 and 0.70 ± 0.10, P <0.05). The ratio of smooth muscle to collagen in the corpus cavernosum was significantly higher in the USC than in the PBS and BCNI model control groups (17.91 ± 2.86 vs 7.70 ± 3.12 and 8.21 ± 3.83, P <0.05) while the rate of cell apoptosis markedly lower in the former than in the latter two (3.31 ± 0.83 vs 9.82 ± 0.76, P <0.01; 3.31 ± 0.83 vs 9.75 ± 0.91, P <0.05).
CONCLUSIONSIntracavernous injection of USCs can protect the erectile function of the rat with cavernous nerve injury by protecting the nerves, improving the endothelial function, alleviating fibrosis and inhibiting cell apoptosis in the cavernous tissue.
Actins ; analysis ; Animals ; Arterial Pressure ; Collagen ; analysis ; Disease Models, Animal ; Erectile Dysfunction ; prevention & control ; Male ; Nitric Oxide Synthase Type I ; analysis ; Nitric Oxide Synthase Type III ; analysis ; Penile Erection ; physiology ; Penis ; innervation ; Pudendal Nerve ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Saline Solution ; administration & dosage ; Stem Cell Transplantation ; methods ; Stem Cells ; Urine ; cytology
8.Immunomodulatory effects of ethanol extract of germinated ice plant (Mesembryanthemum crystallinum).
Joo Hee CHOI ; Sung Gang JO ; Seoung Ki JUNG ; Woo Tae PARK ; Keun Young KIM ; Yong Wook PARK ; Jong Hwan PARK
Laboratory Animal Research 2017;33(1):32-39
The purpose of this study was to investigate the immunomodulatory activity of ice plant (Mesembryanthemum crystallinum) extract (IPE) in vitro and in vivo. Raji (a human B cell line) and Jurkat (a human T cell line) cells were treated with various doses of IPE and cell proliferation was measured by WST assay. Results showed that IPE promoted the proliferation of both Raji and Jurkat cells in a dose-dependent manner. IPE also enhanced IL-6 and TNF-α production in macrophages in the presence of lipopolysaccharide (LPS), although IPE alone did not induce cytokine production. Moreover, IPE treatment upregulated iNOS gene expression in macrophages in a time- and dose-dependent manner and led to the production of nitric oxide in macrophages in the presence of IFNγ. In vivo studies revealed that oral administration of IPE for 2 weeks increased the differentiation of CD4+, CD8+, and CD19+ cells in splenocytes. These findings suggested that IPE has immunomodulatory effects and could be developed as an immunomodulatory supplement.
Administration, Oral
;
Cell Proliferation
;
Cytokines
;
Ethanol*
;
Gene Expression
;
Humans
;
Ice*
;
In Vitro Techniques
;
Interleukin-6
;
Jurkat Cells
;
Lymphocytes
;
Macrophages
;
Mesembryanthemum*
;
Nitric Oxide
9.Vascular protective effects of aqueous extracts of Tribulus terrestris on hypertensive endothelial injury.
Yue-Hua JIANG ; Jin-Hao GUO ; Sai WU ; Chuan-Hua YANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(8):606-614
Angiotensin II (Ang II) is involved in endothelium injury during the development of hypertension. Tribulus terrestris (TT) is used to treat hypertension, arteriosclerosis, and post-stroke syndrome in China. The present study aimed to determine the effects of aqueous TT extracts on endothelial injury in spontaneously hypertensive rats (SHRs) and its protective effects against Ang II-induced injury in human umbilical vein endothelial cells (HUVECs). SHRs were administered intragastrically with TT (17.2 or 8.6 g·kg·d) for 6 weeks, using valsartan (13.5 mg·kg·d) as positive control. Blood pressure, heart rate, endothelial morphology of the thoracic aorta, serum levels of Ang II, endothelin-1 (ET-1), superoxide dismutase (SOD) and malonaldehyde (MDA) were measured. The endothelial injury of HUVECs was induced by 2 × 10 mol·L Ang II. Cell Apoptosisapoptosis, intracellular reactive oxygen species (ROS) was assessed. Endothelial nitric oxide synthase (eNOS), ET-1, SOD, and MDA in the cell culture supernatant and cell migration were assayed. The expression of hypertension-linked genes and proteins were analyzed. TT decreased systolic pressure, diastolic pressure, mean arterial pressure and heart rate, improved endothelial integrity of thoracic aorta, and decreased serum leptin, Ang II, ET-1, NPY, and Hcy, while increased NO in SHRs. TT suppressed Ang II-induced HUVEC proliferation and apoptosis and prolonged the survival, and increased cell migration. TT regulated the ROS, and decreased mRNA expression of Akt1, JAK2, PI3Kα, Erk2, FAK, and NF-κB p65 and protein expression of Erk2, FAK, and NF-κB p65. In conclusion, TT demonstrated anti-hypertensive and endothelial protective effects by regulating Erk2, FAK and NF-κB p65.
Angiotensin II
;
metabolism
;
Animals
;
Antihypertensive Agents
;
administration & dosage
;
Apoptosis
;
drug effects
;
Blood Pressure
;
drug effects
;
Endothelium, Vascular
;
drug effects
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Hypertension
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Male
;
NF-kappa B
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
Oxidative Stress
;
drug effects
;
Plant Extracts
;
administration & dosage
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Rats
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Reactive Oxygen Species
;
metabolism
;
Tribulus
;
chemistry
10.Molecular mechanisms of androgens regulating the eNOS expression in rat corpus cavernosum.
Guo-Ping XIE ; Ji-Yi XIA ; Jun LIU ; Rui JIANG
National Journal of Andrology 2017;23(1):11-20
Objective:
To investigate whether androgens can regulate the expression of eNOS in rat corpus cavernosum through AKT3, PIK3CA, CALM, and CAV1 and influence erectile function.
METHODS:
Thirty-six 8-week-old male SD rats were randomly divided into groups A (4-week control), B (6-week control), C (4-week castration), D (6-week castration), E (4-week castration + testosterone replacement), and F (6-week castration + testosterone replacement). Both the testis and epididymis were removed from the rats in groups C, D, E and F, and on the second day after surgery, the animals of groups E and F were subcutaneously injected with testosterone propionate at 3 mg per kg of the body weight qd alt while all the others with isodose oil instead. At 4 weeks (for groups A, C and E) and 6 weeks (for groups B, D and F) after treatment, we detected the maximum intracavernous pressure (ICPmax), the mean carotid arterial pressure (MAP) and their ratio (ICPmax/MAP), measured the level of serum testosterone (T), and determined the expressions of eNOS, P-eNOS, AKT3, PIK3CA, CALM and CAV1 in the corpus cavernosum by Western blot and immunohistochemistry.
RESULTS:
No statistically significant differences were observed in the body weight and MAP among different groups. The serum T level and ICPmax/MAP were remarkably lower in groups C and D than in the other four groups (P<0.01) as well as in groups E and F than in A and B (P<0.05) but exhibited no significant differences either between E and F or between A and B. Immunohistochemistry showed that eNOS and P-eNOS were mainly expressed in the vascular endothelial cell membrane and cavernous vascular lumen, while AKT3, PIK3CA, CALM and CAV1 chiefly in the vascular endothelial cell cytoplasm and membrane, with a few in the smooth muscle cells. Western blot analysis manifested that the expressions of eNOS, P-eNOS, AKT3, PIK3CA, CALM and CAV1 were markedly lower in groups C and D than in A, B, E and F (P<0.01) as well as in D than in C (P<0.05) but those in groups E and F did not showed any significant difference from those in A and B, nor E from F or A from B.
CONCLUSIONS
Androgens can improve erectile function by upregulating the expressions of AKT3, PIK3CA, CALM and CAV1 protein molecules and activating eNOS after its phosphorylation, though the exact molecular mechanisms are yet to be further studied.
Animals
;
Blood Pressure
;
Blotting, Western
;
Caveolin 1
;
metabolism
;
Class I Phosphatidylinositol 3-Kinases
;
metabolism
;
Erectile Dysfunction
;
Hormone Replacement Therapy
;
Male
;
Monomeric Clathrin Assembly Proteins
;
metabolism
;
Myocytes, Smooth Muscle
;
Nitric Oxide Synthase Type III
;
metabolism
;
Orchiectomy
;
Penile Erection
;
physiology
;
Penis
;
enzymology
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Testosterone Propionate
;
administration & dosage

Result Analysis
Print
Save
E-mail