1.A case-control study on association between shift work and type 2 diabetes mellitus
Can LIU ; Jing FAN ; Weile WU ; Wenjiong LIANG ; Yulong LIAN ; Suzhen GUAN
Journal of Environmental and Occupational Medicine 2025;42(7):827-832
		                        		
		                        			
		                        			Background With economic development and globalization, shift work has become prevalent across industries. Its relationship with type 2 diabetes mellitus (T2DM) attracts increasing attention. Objective To thoroughly explore the relationship between shift work and T2DM, and analyze the impacts of specific shift patterns on T2DM, so as to provide a basis for formulating reasonable shift schedules. Methods We conducted a 1:2 matched case-control study among adults (20-60 years) who ordered occupational health examinations at the Wuxi No.8 People's Hospital from November to December 2023. The case group comprised 200 T2DM patients, while the controls were 400 age-stratified matched non-diabetic individuals. General demographic characteristics, behavioral habits, medical history, and shift work exposure data (including shift patterns, frequency, and length of service) 5 years prior to diagnosis were collected through standardized questionnaires. Logistic regression adjusted for selected confounders was employed to evaluate the association between shift work and T2DM. Results The logistic regression analysis demonstrated that shift work was associated with an increased risk of T2DM. After adjusting for confounding factors, shift workers had a 3.55 times higher risk of being diagnosed T2DM compared to non-shift workers (OR=3.55, 95%CI: 1.026, 12.263). The risk varied across different shift patterns, and the three-shift two-rotation system showed the highest risk (OR=4.17, 95%CI: 1.921, 9.035), followed by the two-shift system (OR=2.94, 95%CI: 2.016, 4.281) and four-shift three-rotation system (OR=2.66, 95%CI: 1.611, 6.093). Workers with more than 3 monthly shift days had a 2.74-fold increased risk (95%CI: 1.658, 4.512) compared to non-shift workers. Additionally, working more than 8 h daily (OR=1.74, 95%CI: 1.185, 2.562) and having more than 20 years of service (OR=2.51, 95%CI: 1.581, 3.976) were both significantly associated with a higher T2DM risk. The trend tests revealed that each incremental increase in monthly shift days and length of service elevated T2DM risk by 2.61 times (95%CI: 1.813, 3.765) and 1.49 times (95%CI: 1.147, 1.931), respectively (P<0.05). Conclusion Shift work is an independent risk factor for T2DM, with three-shift two-rotation system posing the highest risk. Shift frequency, daily working hours, and length of service are all significant factors affecting the risk of T2DM. These findings support industry-specific shift policy reform and targeted glucose monitoring and health interventions are recommended for workers engaged in high-risk shift patterns (e.g., three-shift two-rotation system, frequent shifts) and those with prolonged shift work history (>20 years).
		                        		
		                        		
		                        		
		                        	
2.Mechanism of Wenyang Jieyu Prescription in Regulating Activation of Mouse Hippocampal Microglia Based on JAK2/STAT3 Signaling Pathway
Ying WANG ; Zihan GONG ; Wenqing LIANG ; Jingwen YANG ; Guangxin YUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):88-96
		                        		
		                        			
		                        			ObjectiveTo explore the mechanism of the Wenyang Jieyu prescription in regulating depression-like behavior in mice after maternal-infant separation combined with secondary stress. MethodsAfter birth, the rats were randomly divided into blank (NC) group, maternal-infant separation (MS) group, restraint stress (RS) group, maternal-infant separation combined with restraint stress (MRS) group, Wenyang group, Jieyu group, Wenyang Jieyu (XSF) group, and minocycline group. Maternal-infant separation was performed on day 5 (PD5), followed by weaning at PD21 and prophylactic administration. The dose of Wenyang group, Xiaoyao group, XSF group and minocycline group were 5.85, 12.03, 16.71 g·kg-1 and 50 mg·kg-1, respectively. Restraint stress was applied on PD90. The model was evaluated using glucose, social interaction, open field, and O-maze behavior tests, as well as high-performance liquid chromatography to measure serotonin, dopamine, and other neurotransmitters. The expression level of ionized calcium-binding adaptor molecule-1 (Iba-1) protein, a marker of hippocampal microglia, was detected by immunohistochemistry. Protein expression levels of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) in the hippocampus were analyzed by an automatic protein expression analysis system. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect mRNA expression levels of M1 markers, JAK2/STAT3 pathway-related genes, and cytokines in hippocampal microglia in each group. ResultsCompared with the NC group, the MRS group exhibited depression-like behavior, with significantly decreased levels of neurotransmitters in the hippocampus (P<0.05, P<0.01), increased expression of Iba-1 (P<0.01), and elevated protein levels of JAK2 and STAT3 (P<0.05). The mRNA expression levels of CD68, CD11b, IL-1β, JAK2, and STAT3 were significantly increased (P<0.01), while IL-10 mRNA expression was significantly decreased (P<0.01). Compared with the MRS group, the XSF and minocycline groups showed some improvement in depression-like behavior. In these groups, the hippocampal neurotransmitter content was significantly increased (P<0.05, P<0.01), and Iba-1 expression was significantly decreased (P<0.01). The protein levels of JAK2 and STAT3 in the XSF group showed a downward trend. The mRNA expression levels of CD68, CD11b, JAK2, STAT3, and IL-1β in the hippocampus were significantly decreased in the XSF and minocycline groups (P<0.05, P<0.01), while IL-10 mRNA expression was significantly increased (P<0.05, P<0.01). ConclusionWenyang Jieyu prescription can regulate depression-like behavior in maternal-infant separation mice combined with secondary stress by inhibiting the polarization of hippocampal microglia to the M1 phenotype. The regulation of hippocampal microglia polarization by Wenyang Jieyu prescription may be associated with the JAK2/STAT3 pathway. 
		                        		
		                        		
		                        		
		                        	
3.Activation of Nrf2/HO-1/NQO1 Signaling Pathway by Shenqi Tangluo Pill Improves Oxidative Stress Injury of Skeletal Muscle of Type 2 Diabetes Mellitus Mice
Xiaoli PEI ; Yonglin LIANG ; ⁎ ; Yongqiang DUAN ; ⁎ ; Xiangdong ZHU ; Bing SONG ; Min BAI ; Yunhui ZHAO ; Sichen ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):131-139
		                        		
		                        			
		                        			ObjectiveTo investigate the effect and mechanism of Shenqi Tangluo pill (SQTLP) on oxidative stress injury of skeletal muscle of type 2 diabetes mellitus (T2DM) mice based on nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1)/NAD(P)H quinone oxidoreductase 1 (NQO1) pathway. MethodA total of 60 7-week-old male db/db mice [specific pathogen-free (SPF) grade] were selected and fed for one week for adaption. They were divided into the model control group, SQTLP low-, medium- and high-dose (19, 38, and 76 g·kg-1) groups and metformin group (0.26 g·kg-1) by gavage. Each group consisted of 12 mice. Twelve male db/m mice of the same age were selected as the blank group. The intervention was implemented continuously for 8 weeks. Fasting blood glucose (FBG) was detected. Fasting serum insulin (FINS) levels were detected by enzyme-linked immunosorbent assay (ELISA), and the homeostasis model assessment-insulin resistance (HOMA-IR) index and the homeostasis model assessment-insulin sensitivity index (HOMA-ISI) were calculated. Oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) were conducted. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the contents of malondialdehyde (MDA) and reduced nicotinamide adenine dinucleotide phosphate (NADPH) in skeletal muscle tissues were detected by biochemical kits. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in skeletal muscle tissues. The levels of reactive oxygen species (ROS) and 4-hydroxynonenal (4-HNE) in skeletal muscle tissue were detected by immunofluorescence (IF). The expression levels of Nrf2, HO-1, NQO1 and glutamate-cysteine ligase catalytic subunit (GCLC) proteins in skeletal muscle tissues were detected by Western blot. ResultCompared with those in the blank group, FBG, FINS and HOMA-IR in the model group were significantly increased (P<0.05), while HOMA-ISI was decreased (P<0.05). The results of OGTT and ITT showed that blood glucose was significantly increased at all time points (P<0.05), and glucose tolerance and insulin tolerance were significantly impaired. SOD and GSH-Px activities in skeletal muscle tissues were significantly decreased (P<0.05), and MDA and NADPH contents were significantly increased (P<0.05). In skeletal muscle tissues, the arrangement of muscle fibers was loose, the nucleus was disordered, and inflammatory cells were infiltrated. The expression levels of ROS and 4-HNE in skeletal muscle tissues were significantly increased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly decreased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the metformin group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that blood glucose in the metformin group was significantly decreased at all time points (P<0.05). The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue of the metformin group. The expressions of ROS and 4-HNE in skeletal muscle tissues were decreased (P<0.05). The protein expression levels of Nrf2, HO-1, NQO1 and GCLC in skeletal muscle tissues were significantly increased (P<0.05). Compared with those in the model group, FBG, FINS and HOMA-IR in the SQTLP medium- and high-dose groups were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the glucose tolerance and insulin tolerance of mice were improved in each dose group of SQTLP. The GSH-Px activity in the SQTLP low-dose group was significantly increased (P<0.05), and the NADPH content was decreased (P<0.05). The activities of SOD and GSH-Px in the SQTLP medium- and high-dose groups were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). The skeletal muscle tissue injury of mice in each dose group of SQTLP was ameliorated to different degrees. In the SQTLP medium- and high-dose groups, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05). Compared with those in the SQTLP low-dose group, FBG and HOMA-IR in the SQTLP high-dose group were significantly decreased (P<0.05), while HOMA-ISI was increased (P<0.05). The results of OGTT and ITT showed that the SQTLP high-dose group significantly improved the glucose tolerance and insulin tolerance of mice. The activities of SOD and GSH-Px in skeletal muscle tissues were significantly increased (P<0.05), while the contents of MDA and NADPH were significantly decreased (P<0.05). No obvious abnormality was found in the skeletal muscle tissue, the expressions of ROS and 4-HNE were decreased (P<0.05), and the protein expression levels of Nrf2, HO-1, NQO1 and GCLC were significantly increased (P<0.05) in the skeletal muscle tissue of the SQTLP high-dose group. ConclusionSQTLP can significantly improve IR in T2DM mice, and the mechanism is related to SQTLP activating the Nrf2/HO-1/NQO1 signaling pathway, promoting the expression of antioxidant enzymes, and thus improving the oxidative stress injury in the skeletal muscle. 
		                        		
		                        		
		                        		
		                        	
4. Mechanism of Dahuangtang pellets in regulating podocyte autophagy of diabetic nephropathy mice through AMPK/mTOR/ULK1 signaling pathway
Beibei SU ; Yonglin LIANG ; Chunxia XUE ; Pu ZHANG ; Xiaoli PEI ; Lixia YANG ; Xiangdong ZHU ; Xia YANG
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(3):260-269
		                        		
		                        			
		                        			 AIM: To explore the intervention effect of Dahuangtang pellets (DHT) on diabetic nephropathy (DN) based on the AMP-activated protein kinase/mammalian target of rapamycin/unc-51-like kinase 1 (AMPK/mTOR/ULK1) signaling pathway. METHODS: Eight mice were randomly assigned to the model group, the dapagliflozin group, and the DHT (high, medium, and low dosage) group out of a total of 40 C57BL/KSJ-db/db (hereafter referred to as db/db) mice; another 10 C57BL/KSJ-db/dm mice were used as the normal group, saline was provided to the normal and model groups, and the mice in the treatment group received the appropriate medications. The medications were given for 10 consecutive weeks, once per day, to the mice in the treatment group. At weeks 0, 4, 8, and 10 of administration, fasting blood glucose (FBG) was assessed by drawing blood at a predetermined time from the tail vein; Urine samples were taken at 0, 5, and 10 weeks after treatment to evaluate the levels of albumin and creatinine, and the urinary albumin-creatinine ratio (ACR) was computed. After 10 weeks, mice in each group were assayed for 24 h total urine protein, serum creatinine (Scr), urea nitrogen (BUN) levels; Western blotting analysis was conducted to detect the expression of p-AMPK, p-mTOR, and p-ULK1, as well as the expression of autophagy related proteins homolog of yeast Atg6 (Beclin-1), autophagy-related proteins microtubule-associated protein 1 light chain 3 (LC3), P62 in renal tissue; Immunohistochemistry was used to measure the expression of podocyte lacunar membrane proteins (Nephrin, Podocin) in renal tissues; The pathological morphology of renal tissue was observed by light microscopy and transmission electron microscopy. RESULTS: Compared with the model group, FBG, ACR, and 24 h total urine protein were reduced in the dapagliflozin group and DHT groups of mice, and there was no statistically significant difference in Scr and BUN; In renal tissues, there is increased expression of p-AMPK and p-ULK1, decreased expression of p-mTOR, increased expression of LC3II / LC3I and Beclin-1, and decreased expression of P62 (P<0.01, P< 0.05); differentially upregulated in glomeruli are the podocyte lacunar membrane proteins Nephrin and Podocin (P<0.01, P<0.05); renal pathologic damage was reduced to varying degrees; transmission electron microscopy showed an increase in the number of autophagic vesicles and autophagic lysosomes. CONCLUSION: DHT can delay the development of DN by regulating the AMPK / mTOR / ULK1 signaling pathway, enhancing podocyte autophagy, and protecting glomeruli. 
		                        		
		                        		
		                        		
		                        	
5.Syndromes and Mechanisms of Depression Induced by Second Hit in Mice
Zihan GONG ; Ying WANG ; Jingwen YANG ; Wenqing LIANG ; Danhua MENG ; Kaijie SHE ; Yuan LIANG ; Guangxin YUE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(6):29-38
		                        		
		                        			
		                        			ObjectiveTo explore the syndromes and mechanisms of depression induced by maternal separation (MS) combined with chronic restraint stress (RS) in mice. MethodOn postnatal day 0 (PD0), the offspring mice were randomized into a blank group (NC) and a modeling group. The mouse model of depression was established by MS+RS for 21 days. After removal of female mice on PD21, the modeled mice were randomized into model, Wenyang, Jieyu, Wenyang Jieyu, and fluoxetine groups, with 15 mice in each group. The sucrose preference, tail suspension, and open field tests were carried out to evaluate the anxiety and depression-like behavior in mice. Enzyme-linked immunosorbent assay was used to measure the adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) levels in mouse plasma. High performance liquid chromatography-electrochemical detector was used to determine the content of monoamine neurotransmitters in the hippocampus. Real-time fluorescence quantitative polymerase chain reaction was employed to determine the mRNA levels of genes in the 5-hydroxytryptamine (5-HT) system, hypothalamic-pituitary-adrenal (HPA) axis, and brain-derived neurotrophic factor (BDNF) signaling pathway in the hippocampus. Immunohistochemistry was employed to determine the expression levels of proteins in the 5-HT system and HPA axis in the hippocampus. The Simple Western system was used to determine the protein levels of BDNF and tyrosine kinase receptor B (TrkB) in the hippocampus. ResultCompared with the NC group, the model group exhibited depression-like behavior, which was significantly relieved by Wenyang Jieyu prescription and fluoxetine. Compared with the NC group, the model group showed elevated levels of CORT and ACTH in the plasma (P<0.01), which, however, were lowered by Wenyang Jieyu prescription and fluoxetine (P<0.05, P<0.01). Compared with the NC group, the model group showed inhibited expression of neurotransmitters in the hippocampus (P<0.05, P<0.01), while Wenyang Jieyu prescription and fluoxetine restored the expression of neurotransmitters (P<0.05, P<0.01). Compared with NC group, the model group showed inhibition of the 5-HTergic nerve and abnormal activation of the HPA axis, and Wenyang Jieyu prescription and fluoxetine regulated the abnormal state of the 5-HTergic nerve and HPA axis. Compared with NC group, the modeling down-regulated the mRNA and protein levels of BDNF and TrkB in the hippocampus (P<0.05, P<0.01), which, however, were recovered in Wenyang, Jieyu, Wenyang Jieyu, and fluoxetine groups (P<0.05, P<0.01). ConclusionThe mouse model of depression induced by MS+RS may present the syndrome of Yang deficiency and liver depression. Wenyang Jieyu prescription may increase the content of hippocampal neurotransmitters by regulating the 5-HT system and the BDNF signaling pathway mediated by the HPA axis, thereby alleviating depression-like behavior in mice. 
		                        		
		                        		
		                        		
		                        	
6.Mechanism Exploration of TG Regulating PI3K/Akt to Improve Insulin Resistance in Liver of T2DM Rats Based on Transcriptomics
Qin LI ; Yonglin LIANG ; Xiaowei SHI ; Xuan LIU ; Xiangdong ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):99-109
		                        		
		                        			
		                        			ObjectiveTo investigate the effect of Tangzhi pills on the improvement of insulin resistance (IR) in the liver with type 2 diabetes (T2DM) by regulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway based on differential genes and its possible molecular mechanism. MethodT2DM rat models were prepared by high fat (HFD) diet combined with streptozotocin (STZ) intraperitoneal injection. The experiment was divided into blank group, model group, metformin hydrochloride group (0.18 g·kg-1), Tangzhi pills high (1.08 g·kg-1), medium (0.54 g·kg-1) and low (0.27 g·kg-1) dose groups. Rat serum, liver, and pancreatic tissue were collected, and the pathological tissue of the liver and pancreas was observed using hematoxylin-eosin (HE) staining. The fasting blood glucose level (FBG) was detected, and oral glucose tolerance (OGTT) tests were conducted. Enzyme-linked immunosorbent assay (ELISA) was used to detect fasting serum insulin (FINS) and glycated hemoglobin (GHb) levels in rats. IR homeostasis model index (HOMA-IR), β cellular homeostasis index (HOMA-β), and insulin sensitivity index (ISI) were calculated. Biochemical methods were used to determine the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C) in rat serum. Transcriptomics obtained differentially expressed mRNA from liver tissue and enriched differentially expressed pathways. Real-time reverse transcriptase polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of cyclic adenylate responsive element binding protein 3-like protein 2 antibody (CREB3l2), B-lymphocyte tumor 2 (Bcl-2), Toll-like receptor 2 (TLR2), cyclin-dependent kinase inhibitor 1A (CDNK1A), and DNA damage induced transcription factor 4-like protein (DDIT4) in liver tissue. Western blot was used to detect the protein expression of phosphorylated phosphatidylinositol 3-kinase (p-PI3K), phosphorylated protein kinase B (p-Akt), glucose transporter 4 (GLUT4), insulin receptor (INSR), and insulin receptor substrate 2 (IRS2). ResultThe pharmacodynamic experiment results showed that compared with model group, Tangzhi pills groups repaired liver and pancreatic tissue to varying degrees, reduced blood sugar (P<0.01), and promoted a decrease in serum FINS, GHb, and HOMA-IR (P<0.05, P<0.01). In addition, HOMA-β and ISI increased (P<0.05, P<0.01). The levels of TC, TG, and LDL-C decreased (P<0.05, P<0.01), while the levels of HDL-C increased (P<0.05, P<0.01). The transcriptomics experimental results confirmed that the PI3K/Akt signaling pathway was significantly expressed in both the blank group and model group, as well as in the high-dose Tangzhi pills group and model group. CDNK1A, DDIT4, CREB3l2, Bcl-2, and TLR2 were significantly differentially expressed mRNA during TG intervention in T2DM. Compared with the model group, the protein expression of p-PI3K, p-Akt, GLUT4, INSR, and IRS2 increased in all Tangzhi pills groups (P<0.01). The mRNA expression of CREB3l2, Bcl-2, and TLR2 increased (P<0.01), while that of CDNK1A and DDIT4 decreased (P<0.01). ConclusionTangzhi pills may regulate the PI3K/Akt signaling pathway based on the differential mRNA expression of CREB3l2, Bcl-2, TLR2, CDNK1A, and DDIT4, thereby improving IR in the liver with T2DM. 
		                        		
		                        		
		                        		
		                        	
7.Mechanism of Dahuang Tangluo Pills in Improving Renal Inflammatory Injury in Diabetic Kidkdey Disease by Regulating AGEs/RAGE/IKK/NF-κB Pathway
Pu ZHANG ; Jianqing LIANG ; Xia YANG ; Min BAI ; Xiangdong ZHU ; Chunxia XUE ; Beibei SU ; Yunhui ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(20):77-85
		                        		
		                        			
		                        			ObjectiveTo explore the protective effects of Dahuang Tangluo pills on early diabetic kidkdey disease (DKD) in db/db mice. MethodEight db/m mice were selected as the control group. Forty male db/db mice were selected and blood samples were collected via tail vein to measure fasting blood glucose (FBG). Mice with FBG ≥ 16.7 mmol·L-1, increased urine output, and persistent albuminuria were considered successful in model establishment. After successful modeling, they were randomly divided into a model group, a dapagliflozin group (1.5 mg·kg-1·d-1), and high, medium, and low dose groups of Dahuang Tangluo pills (3.6, 1.8, 0.9 g·kg-1·d-1, respectively), with eight mice in each group. All medication groups were administered orally, while the control and model groups were given an equal amount of distilled water by gavage daily. After continuous administration for 10 weeks, the survival status of the mice was observed, and their body weight, FBG, and kidney function-related indicators were measured. Inflammatory indicators in renal tissues were determined by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining, Masson staining, and electron microscopy were used to observe the pathological changes in renal tissues in each group. Immunofluorescence was employed to examine the expression of advanced glycation end products (AGEs) and receptors for advanced glycation end products (RAGE) proteins. Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blot were utilized to detect the gene and protein expression levels of AGEs, RAGE, inhibitor of nuclear factor-κB (NF-κB) kinase (IKK), and NF-κB in the renal tissues of mice in each group. ResultCompared with control group, the model group showed a significant increase in body weight, FBG, serum creatinine (SCr), urinary microalbumin/urine creatinine ratio (ACR), total cholesterol (TC), and triglycerides (TG) (P<0.05). The levels of intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in renal tissues were significantly elevated (P<0.05). Renal histopathological staining and electron microscopy revealed loose arrangement, gaps, structural disarray, mesangial proliferation, and significant fibrosis in renal tissues. Real-time PCR results showed a significant increase in the expression of RAGE, IKK, and NF-κB genes in renal tissues (P<0.05). Immunofluorescence results demonstrated a significant increase in the expression of AGEs and RAGE proteins in renal tissues (P<0.05). Western blot results showed a significant increase in the expression of AGEs, RAGE, IKK, and NF-κB proteins in renal tissues (P<0.05). After drug intervention, compared with model group, the dapagliflozin group and the high-dose Dahuang Tangluo pills group showed significant reductions in body weight, FBG, SCr, and ACR (P<0.05), and a significant decrease in TC in mouse serum (P<0.05), while the high-dose Dahuang Tangluo pills group showed a significant decrease in TG in mouse serum (P<0.05). All treatment groups showed a significant reduction in ICAM-1, IL-6, and TNF-α in renal tissues (P<0.05). Renal histopathological staining and electron microscopy showed improved kidney injury, decreased collagen fiber deposition, and reduced mesangial proliferation in all treatment groups. Real-time PCR results showed a significant decrease in the expression of RAGE, IKK, and NF-κB genes in the dapagliflozin group and the high- and medium-dose Dahuang Tangluo pills groups (P<0.05). Immunofluorescence results demonstrated a significant decrease in the expression of AGEs and RAGE proteins in the dapagliflozin group and the high- and medium-dose Dahuang Tangluo pills groups (P<0.05). Western blot results showed a significant decrease in the expression of AGEs, RAGE, IKK, and NF-κB proteins in the dapagliflozin group and the high- and medium-dose Dahuang Tangluo pills groups (P<0.05). ConclusionDahuang Tangluo pills can improve the pathological structure of the kidneys and reduce renal inflammation in DKD mice, possibly through inhibiting the AGEs/RAGE/IKK/NF-κB pathway. 
		                        		
		                        		
		                        		
		                        	
8.Effect of Modified Dahuang Huanglian Xiexintang on Mitochondrial Autophagy and Browning of Visceral Fat in Obese Type 2 Diabetes Mellitus Rats
Dong AN ; Yonglin LIANG ; Yankui GAO ; Fengzhe YAN ; Sichen ZHAO ; Zhongtang LIU ; Chengjun MA ; Xiangdong ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):131-140
		                        		
		                        			
		                        			ObjectiveTo observe the effect of modified Dahuang Huanglian Xiexintang on mitochondrial autophagy and browning of visceral adipose tissue in obese type 2 diabetes mellitus (T2DM) model ZDF rats. MethodForty ZDF rats were induced with a high-fat diet to establish an obese T2DM model. The rats were randomly divided into five groups: Model group, metformin group (0.18 g·kg-1), and high, medium, and low dose groups of modified Dahuang Huanglian Xiexintang (2.16, 1.08, 0.54 g·kg-1), with eight rats in each group. Additionally, eight ZDF (fa/+) rats were assigned to the normal group. All groups received an intragastric volume of 10 mL·kg-1, with the model and normal groups receiving the same volume of purified water once daily for 12 weeks. Fasting blood glucose (FBG) was regularly measured. After 12 weeks of intervention, the body weight, epididymal fat weight, and serum levels of glucose (GLU), glycated serum protein (GSP), triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured. Hematoxylin-eosin (HE) staining was used to observe pathological changes in epididymal fat tissue. Transmission electron microscopy (TEM) was employed to observe mitochondrial autophagy in adipocytes. Real-time PCR was used to detect the mRNA expression of hypoxia-inducible factor-1α (HIF-1α), Bcl-2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3), microtubule-associated protein 1 light chain 3B (LC3B), p62/SQSTM1, uncoupling protein 1 (UCP1), iodothyronine deiodinase 2 (Dio2), and PR domain containing 16 (Prdm16) in epididymal fat. Western blot was used to detect the protein expression of HIF-1α, BNIP3, LC3B, p62, and UCP1 in epididymal fat. ResultCompared with the normal group, the model group showed pathological changes in epididymal fat, with adipocyte mitochondrial condensation and numerous autophagosomes indicating mitochondrial autophagy. The model group also exhibited significantly increased body weight, epididymal fat weight, FBG, GLU, GSP, TC, TG, and LDL-C levels (P<0.01), significantly decreased HDL-C levels (P<0.01), significantly elevated mRNA and protein expression of HIF-1α, BNIP3, and LC3B (P<0.01), significantly reduced mRNA and protein expression of p62 and UCP1 (P<0.01), and significantly reduced mRNA expression of Dio2 and Prdm16 (P<0.01). Compared with the model group, all intervention groups showed varying degrees of improvement in epididymal fat pathology. The metformin group and high-dose modified Dahuang Huanglian Xiexintang group displayed intact mitochondrial morphology, clear cristae, uniform matrix, and few autophagosomes and autophagosomes in the adipocyte cytoplasm. The metformin group and high- and medium-dose groups of modified Dahuang Huanglian Xiexintang showed significantly reduced body weight and epididymal fat weight (P<0.01). The epididymal fat index was reduced in all intervention groups (P<0.05), and FBG was lowered in all intervention groups (P<0.01).Serum GSP, GLU, TG, and LDL-C levels were reduced in the metformin group and the high- and medium-dose groups of modified Dahuang Huanglian Xiexintang (P<0.05, P<0.01). The serum TC level was significantly reduced in the metformin group and high-dose group of modified Dahuang Huanglian Xiexintang (P<0.01), and HDL-C levels were significantly increased in all intervention groups (P<0.05, P<0.01). The mRNA and protein expression of HIF-1α, BNIP3, and LC3B were significantly reduced, and UCP1 protein expression was significantly increased in the metformin group and high- and medium-dose groups of modified Dahuang Huanglian Xiexintang (P<0.05, P<0.01). The mRNA and protein expression of p62, Dio2, and Prdm16 were significantly increased in the metformin group and high-dose group of modified Dahuang Huanglian Xiexintang (P<0.05, P<0.01). ConclusionModified Dahuang Huanglian Xiexintang may inhibit mitochondrial autophagy and promote the browning of visceral adipose tissue through the HIF-1α/BNIP3/LC3B pathway, thereby improving glucose and lipid metabolism in obese T2DM rats. 
		                        		
		                        		
		                        		
		                        	
9.Dahuang Huanglian Xiexintang and Its Modified Prescription Improve Type 2 Diabetes Mellitus: A Review
Dong AN ; Yanhui ZHAI ; Yankui GAO ; Rong LIU ; Qi ZHOU ; Xiangdong ZHU ; Yonglin LIANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(24):141-151
		                        		
		                        			
		                        			Type 2 diabetes mellitus (T2DM) is based on insulin resistance (IR) and insulin secretion deficiency, with the specific mechanisms still unclear. Current research involves mechanisms such as glycolipid toxicity, inflammatory response, oxidative stress damage, and mitochondrial dysfunction. Modern traditional Chinese medicine (TCM) scholars have named it "blood glucose collateral disease" based on the clinical characteristics and natural progression of T2DM. This condition is primarily manifested as abnormal blood sugar levels in the early stages, and as the disease progresses, it gradually causes widespread damage to the body's veins and collaterals, ultimately leading to lesions in vessels and collaterals. Among these, "spleen heat" (obesity type) is the most common clinical type of T2DM. The concept of "internal heat-induced elimination" runs through both the onset and complications of T2DM, with internal heat being a key factor in its pathogenesis. The clinical application of Dahuang Huanglian Xiexintang and its modifications has achieved significant therapeutic effects. This paper reviews the origins and treatment characteristics of Dahuang Huanglian Xiexintang, along with clinical application research and experimental studies related to T2DM treatment, involving mechanisms for regulating glucose and lipid metabolism disorders, improving IR, modulating inflammatory responses, combating oxidative stress damage, regulating autophagy-related signaling pathways, modulating intestinal flora, inhibiting pyroptosis, and alleviating endoplasmic reticulum stress, with the purpose to provide direction for further research on the prevention and treatment of T2DM and its related complications, to offer reference for developing Dahuang Huanglian Xiexintang as a rapid hypoglycemic Chinese patent medicine for obese T2DM, and to better guide the clinical promotion of this drug. 
		                        		
		                        		
		                        		
		                        	
10.Association between wrist pain and awkward postures among workers in 10 key industries
Guanlin LI ; Xin SUN ; Meibian ZHANG ; Huadong ZHANG ; Ruijie LING ; Yimin LIU ; Gang LI ; Nengzhou CHEN ; Zaoliang REN ; Yan YIN ; Hua SHAO ; Hengdong ZHANG ; Jiajie LI ; Bing QIU ; Dayu WANG ; Qiang ZENG ; Zhanhui LIANG ; Rugang WANG ; Jianchao CHEN ; Danying ZHANG ; Liangying MEI ; Yongquan LIU ; Jixiang LIU ; Chengyun ZHANG ; Tianlai LI ; Ning JIA ; Junyi WANG ; Zhongxu WANG ; Qingsong CHEN
Journal of Environmental and Occupational Medicine 2023;40(1):49-54
		                        		
		                        			
		                        			Background Prolonged awkward postures during occupational activities can lead to excessive musculoskeletal load on the wrist of workers and symptoms such as wrist pain or discomfort. Objective To survey the prevalence of wrist pain among workers in 10 key industries and analyze its correlation with wrist working postures. Methods By using stratified cluster sampling method, workers from 10 key industries, such as footwear manufacturing industry, shipbuilding manufacturing industry, and automobile manufacturing industry, were selected from seven regions in North China, East China, Central China, South China, Southwest China, Northwest China, and Northeast China. The demographic information, wrist working postures, pain in wrist of the workers were collected through a cross-sectional survey. Pearson χ2 test was used to compare prevalence by selected factors, trend χ2 test for between group comparison, and unconditional logistic regression models for the association of wrist working postures with wrist pain. Results There were 64052 workers enrolled in this survey, and 56286 provided valid questionnaires (the effective rate was 87.8%). According to the survey, the prevalence of wrist pain was 23.3% (13112/56286), and the industries with higher prevalences were footwear manufacturing (27.1%, 1927/7106), automobile manufacturing (24.9%, 5378/21560), and shipbuilding and related equipment manufacturing (24.4%, 850/3488) industries. Finger pinching (OR=2.09, 95%CI: 1.95-2.24), frequent wrist bending (OR=2.03, 95%CI: 1.92-2.15), fixed wrist bending (OR=1.77, 95%CI: 1.69-1.85), wrist on hard edge (OR=1.34, 95%CI: 1.28-1.40), and arms over shoulders (OR=1.11, 95%CI: 1.05-1.17) increased the risk of reporting wrist pain. Conclusion Awkward postures are related to wrist pain among workers in selected 10 key industries. The related factors are wrist on hard edge, frequent wrist bending, finger pinching, fixed wrist bending, and arms over shoulders.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail