1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.A Study on Brain Functional Connectivity in Patients With Disorders of Consciousness Based on Auditory Stimulation
Ning YIN ; Fan YANG ; Zhong-Zhen LI ; Ya-Mei HAN ; Ji-Cheng LI ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2024;51(6):1434-1444
Objective At present, the grading evaluation of patients with disorders of consciousness (DOC) is still a focus and difficulty in related fields. Electroencephalogram (EEG) can directly read and continuously reflect scalp electrical activity generated by brain tissue structure, with high temporal resolution. Auditory stimulation is easy to operate and has broad application prospects in clinical detection of DOC. The causal network can intuitively reflect the direction of information transmission through the causal relationship between time series, helping us better understand the information interaction between different regions of the brain of patients. This paper combines EEG and causal networks to explore the differences in brain functional connectivity between patients with unresponsive arousal syndrome (VS) and those with minimum state of consciousness (MCS) under auditory stimulation. MethodsA total of 23 DOC patients were included, including 11 MCS patients and 12 VS patients. Based on the Oddball paradigm, auditory naming stimulation was performed on DOC patients and EEG signals of DOC patients were synchronously collected. The brain functional networks were constructed using multivariate Granger causality method, and the differences in node degree, clustering coefficient, global efficiency, and causal flow of the brain networks between MCS patients and VS patients were calculated. The differences in network characteristics of patients with different levels of consciousness under auditory stimulation were compared from the perspective of cooperation between brain regions. ResultsThe causal connectivity between most brain regions in MCS patients was stronger than that in VS patients, and MCS patients had more brain network connectivity edges than VS patients. The average degree (P<0.05), average clustering coefficient, and global efficiency (P<0.05) of MCS patients under naming stimulation were higher than those of VS patients. The difference in out-degree between each node of VS patients was larger, and the difference in in-degree between each node of MCS patients was smaller. The difference in in-degree of MCS patients was more significant than that of VS patients, and the inflow and outflow of information in the brain functional network of MCS patients were stronger than those of VS patients. MCS and VS patients had differences of causal flow in the frontal and temporal lobes, the direction of information transmission in the parietal lobe and central region was not the same, and MCS patients had more electrodes as causal sources than VS patients. ConclusionThe information transmission ability of MCS patients is stronger than that of VS patients under auditory naming stimulation. Compared with VS patients, MCS patients have an increase in the number of electrode channels as the causal source, an increase in information output to other brain regions, and also an increase in the information output within brain regions, which may indicate a better state of consciousness in patients. MCS patients have more electrode channels for information output in the frontal lobe than VS patients, and the number of electrode channels for changing the direction of information transmission in the frontal lobe is the highest. The frontal lobe is closely related to the level of consciousness in patients with consciousness disorders. This study can provide a theoretical basis for the grading evaluation of consciousness levels in DOC patients.
6.Effects of long-term high-altitude exposure on the composition of gut microflora in different intestinal segments of rats
Zhi-Fang ZHAO ; Xu-Fei ZHANG ; Ning SUN ; Hao LI ; Hai-Lin MA
Modern Interventional Diagnosis and Treatment in Gastroenterology 2024;29(5):552-559
Objective To investigate the effects of long-term high altitude exposure on the composition and structure of the gut microbiota in rats in different intestinal segments,and to explore the key affected intestinal segments initially.Methods Six-week-old C57BL/6 mice were randomly divided into a control group(Control group)and a high altitude exposed group(HA group).The HA group was exposed to a low-pressure oxygen chamber at a simulated altitude of 3500-4000 m for 20 weeks,after which the microbiomes of both groups were analysed using high-throughput 16s rRNA sequencing and core changes in the duodenal,jejunal,ileal and colonic microflora communities were determined.Results The microbial abundance of the colon was significantly reduced in the hypoxic environment of high altitude,the microbial abundance and diversity of the foregut did not change significantly,and the AVD value of the colon was higher than that of the other intestinal segments,and it tended to be more stable after prolonged exposure to treatment in high altitude;At the Bray-curtis distance,the Microbial structure of the ileum and colon was significantly different between the Control and HA groups,whereas the duodenum and jejunum showed no significant changes;The predominant phylum in all intestinal segments was Firmicutes,but the dominant phyla varied in different intestinal segments and treatment groups,with Lactobacillus spp.contributing highly to the changes in the gut microflora;the complexity of the phylogenetic network of the ileum was higher than that of the other intestinal segments,whereas the colon had the fewest phylogenetic interactions;the jejunum and the ileum consisted mainly of abundant taxa,whereas the colon had a significantly smaller proportion of abundant taxa,mainly Conditionally rare taxa.The duodenum differed in taxa composition between the Control and HA groups.Conclusion High-altitude hypoxia can affect the microecological environment of the ileum and colon by remodelling the composition and structure of the intestinal microflora,especially in the ileum compared with the other three intestinal segments.In addition,the ileum is characterised by both lower complexity of the microflora structure and the prominent role of key genera in the high altitude hypoxia study,in which the changes of Lactobacillus spp.are worthy of more in-depth study at a later stage.Therefore,the ileal microbiota of rats may have a higher research value compared with other intestinal segments.
7.Research progress on the relationship between anemia and neonatal necrotizing enterocolitis
Zhi-Yue DENG ; Feng-Dan XU ; Xiao-Guang HE ; Ning LI
Chinese Journal of Contemporary Pediatrics 2024;26(6):646-651
Neonatal necrotizing enterocolitis(NEC)is the most common inflammatory intestinal disease in preterm infants,with a high incidence and mortality rate.The etiology and mechanisms of NEC are not yet fully understood,and multiple factors contribute to its occurrence and development.Recent studies have found that anemia is a risk factor for NEC in neonates,but the specific pathogenic mechanism remains unclear.This article reviews recent research on the relationship between anemia and NEC,providing a reference for further understanding the impact of anemia on intestinal injury and its association with NEC.
8.Immunological characteristics of the PhoP protein of two-component system in Mycobacterium tuberculosis
Xue LI ; Huan-Huan NING ; Jian KANG ; Ming-Ze XU ; Ruo-Nan CUI ; Ting DAI ; Yan-Zhi LU ; Sa XUE ; Yin-Lan BAI
Chinese Journal of Zoonoses 2024;40(4):352-358
In this study,the immunological characteristics of the PhoP protein were explored with a two-component system of Mycobacterium tuberculosis(Mtb).Bioinformatics was used to predict the B and T cell epitopes of the PhoP protein.A re-combinant expression plasmid was constructed by PCR analysis of the phoP sequence and cloning into the prokaryotic expres-sion vector pET-28a(+).Competent Escherichia coli BL21 cells were transformed with the recombinant plasmid and expres-sion was induced with IPTG.The recombinant PhoP protein was purified by affinity chromatography.Serum levels of PhoP-specific antibodies in Mtb-infected mice and tuberculosis(TB)patients were analyzed with an ELISA.BALB/c mice were im-munized with the PhoP recombinant protein by intramuscular injection.Sera of mice were collected and antibody titers were detected with an ELISA and specificity was assessed by West-ern blot analysis.Mouse splenocytes were isolated and the pro-portions of IFN-y-positive cells and cytokine levels were detec-ted with an ELISpot and ELISA,respectively.Bioinformatics i-dentified 24 B cell and 11 T cell epitopes of the PhoP protein.A prokaryotic recombinant vector of PhoP was successfully con-structed and the recombinant PhoP protein was obtained by purification.Specific antibody levels to PhoP in sera of Mtb in-fected mice and TB patients increased significantly,with preci-sion of 99.9%and 82.5%,and specificity of 100%,respectively.PhoP protein immunization successfully induced production of specific antibodies in mice.Stimulated by antigens in vitro,IL-2 and IFN-γ levels were significantly increased in the splenocytes of immunized mice.Immunization with the PhoP protein induce a humoral immune response and Thl-dominated cellular immu-nity,indicating that the PhoP protein was immunogenic with diagnostic efficacy for TB.These results lay a foundation to clari-fy the role of PhoP in Mtb infection and application for diagnosis and prevention of TB.
9.The Effects of RNF213 on the Proliferation and Apoptosis of Acute Myeloid Leukemia THP-1 Cells
Xiao-Qi SHI ; Ping-Ping ZHANG ; Ya-Ning GUAN ; Zuo-Chen DU ; Yan CHEN ; Pei HUANG ; Zhi-Xu HE
Journal of Experimental Hematology 2024;32(5):1365-1371
Objective:To discover the relationship between the RNF213 gene and acute myeloid leukemia(AML),and explore the effect of RNF213 on the proliferation and apoptosis of THP-1 cells.Methods:Analyze the expression of RNF213 gene in AML and its relationship with prognosis through the GEPIA database.Collecting 30 AML patients and non-tumor hematological patients who went to the Affiliated Hospital of Zunyi Medical University from January 2017 to January 2022.RT-qPCR and Western blot were used to detect the expression levels of RNF213 mRNA and protein.Perform survival of patients was analysed by Kaplan-Meier.Meanwhile,the expression levels of RNF213 mRNA and protein were detected in AML cell lines(THP-1,OCI-AML2).CRISPR-Cas9 was used to knockdown the RNF213 gene in THP-1 cells;flow cytometry was used to detect apoptosis rate of cell.CCK-8 and colony formation assay were used to detect cell proliferation.Western blot was used to detect the expression level of Cleaved-Caspase 3 protein.Results:Compared with the control group,the expression level of RNF213 in AML patients was significantly increased,and patients with high expression of RNF213 have a worse prgnosis.Higher expression level of RNF213 protein in THP-1 cells.After knocking down the RNF213 gene of THP-1 cells,cell proliferation was significantly reduced,and the apoptosis rate and expression of apoptosis related protein Cleared-Caspase3 were significantly increased.Conclusion:AML patients have high expression of RNF213,and the prognosis of high expression patients is poor.The RNF213 gene affects AML cell proliferation and apoptosis,and may be a prognostic marker and potential therapeutic target for AML.
10.Clinical analysis of inflatable video-assisted mediastinoscopic transhiatal esophagectomy combined with laparoscopy.
Zhi Ning HUANG ; Chang Qing LIU ; Ming Fa GUO ; Mei Qing XU ; Xiao Hui SUN ; Gao Xiang WANG ; Ming Ran XIE
Chinese Journal of Surgery 2023;61(1):48-53
Objective: To examine the safety and effectiveness of inflatable video-assisted mediastinoscopic transhiatal esophagectomy (IVMTE). Methods: Totally 269 patients admitted to the Anhui Provincial Hospital of Anhui Medical University who underwent IVMTE (IVMTE group, n=47) or thoracoscopy combined with minimally invasive Mckeown esophageal cancer resection (MIME group, n=222) from September 2017 to December 2021 were analyzed retrospectively. There were 31 males and 16 females in IVMTE group, aged (68.6±7.5) years (range: 54 to 87 years). There were 159 males and 63 females in MIME group, aged (66.8±8.8) years (range: 42 to 93 years). A 1∶1 match was performed on both groups by propensity score matching, with 38 cases in each group. The intraoperative conditions and postoperative complication rates of the two groups were compared by t test, Wilcoxon rank, χ2 test, or Fisher exact probability method. Results: Patients in IVMTE group had less intraoperative bleeding ((96.0±39.2) ml vs. (123.8±49.3) ml, t=-2.627, P=0.011), shorter operation time ((239.1±47.3) minutes vs. (264.2±57.2) minutes, t=-2.086, P=0.040), and less drainage 3 days after surgery (85(89) ml vs. 675(573) ml, Z=-7.575, P<0.01) compared with that of MIME group. There were no statistically significant differences between the two groups in terms of drainage tube-belt time, postoperative hospital stay, and lymph node dissection stations and numbers (all P>0.05). The incidence of Clavien-Dindo grade 1 to 2 pulmonary infection (7.9%(3/38) vs. 31.6%(12/38), χ²=6.728, P=0.009), total complications (21.1%(8/38) vs. 47.4%(18/38), χ²=5.846, P=0.016) and total lung complications (13.2%(5/38) vs. 42.1%(16/38), χ²=7.962, P=0.005) in the IVMTE group were significantly lower. Conclusion: Inflatable video-assisted mediastinoscopic transhiatal esophagectomy combined with laparoscopic esophagectomy is safe and feasible, which can reach the same range of oncology as thoracoscopic surgery.
Male
;
Female
;
Humans
;
Retrospective Studies
;
Esophagectomy/methods*
;
Treatment Outcome
;
Laparoscopy
;
Thoracoscopy
;
Lymph Node Excision/methods*
;
Esophageal Neoplasms/surgery*
;
Postoperative Complications

Result Analysis
Print
Save
E-mail