1.Exploring mechanism of Porana racemosa Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
Through network pharmacology and molecular docking technology, combined with
2.Network pharmacology, molecular docking, and animal experiments reveal mechanism of Zhizhu Decoction in regulating macrophage polarization to reduce adipose tissue inflammation in obese children.
Yong-Kai YIN ; Chang-Miao NIU ; Li-Ting LIANG ; Mo DAN ; Tian-Qi GAO ; Yan-Hong QIN ; Xiao-Ning YAN
China Journal of Chinese Materia Medica 2025;50(1):228-238
Network pharmacology and molecular docking were employed to predict the mechanism of Zhizhu Decoction in regulating macrophage polarization to reduce adipose tissue inflammation in obese children, and animal experiments were then carried out to validate the prediction results. The active ingredients and targets of Zhizhu Decoction were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The inflammation related targets in the adipose tissue of obese children were searched against GeneCards, OMIM, and DisGeNET, and a drug-disease-target network was established. STRING was used to construct a protein-protein interaction(PPI) network and screen for core targets. R language was used to carry out Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. AutoDock was used for the molecular docking between core targets and active ingredients. 24 SPF grade 6-week C57B/6J male mice were adaptively fed for 1 week, and 8 mice were randomly selected as the blank group. The remaining 16 mice were fed with high-fat diet for 8 weeks to onstruct a high-fat diet induced mouse obesity model. After successful modeling, the 16 mice were randomly divided into model group and Zhizhu Decoction group, with 8 mice in each group. Zhizhu Decoction group was intervened by gavage for 14 days, once a day. Blank group and model group were given an equal amount of sterile double distilled water(ddH_2O) by gavage daily. After the last gavage, serum and inguinal adipose tissue were collected from mice for testing. The morphology of inguinal adipose tissue was observed by hematoxylin-eosin(HE) staining, the levels of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α)were detected by enzyme-linked immunosorbent assay(ELISA), and the protein expression of macrophage marker molecule nitric oxide synthase(iNOS) and epidermal growth factor like hormone receptor 1(F4/80) was detected by immunofluorescence staining. Network pharmacology predicted luteolin, naringenin, and nobiletin as the main active ingredients in Zhizhu Decoction and 15 core targets. KEGG pathway enrichment analysis revealed involvement in the key signaling pathway of nuclear factor κB(NF-κB). Molecular docking showed that the active ingredients of Zhizhu Decoction bound well to the core targets. Animal experiment showed that compared with the model group, Zhizhu Decoction reduced the distribution of inflammatory cytokines in the inguinal adipose tissue of mice, lowered the levels of TNF-α and IL-6 in the serum(P<0.05, P<0.01), and down-regulated the expression of iNOS and F4/80(P<0.05). The results showed that the active ingredients in Zhizhu Decoction, such as luteolin, naringenin, and nobiletin, inhibit the aggregation of macrophages in adipose tissue, downregulate their classic activated macrophage(M1) polarization, reduce the expression of inflammatory factors IL-6 and TNF-α, and thus improve adipose tissue inflammation in obese mice.
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Docking Simulation
;
Adipose Tissue/immunology*
;
Mice
;
Male
;
Humans
;
Network Pharmacology
;
Macrophages/immunology*
;
Mice, Inbred C57BL
;
Child
;
Protein Interaction Maps/drug effects*
;
Obesity/genetics*
;
Inflammation/drug therapy*
3.Efficacy and Survival Analysis of Chidamide Combined with DICE Regimen in Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma.
Li-Li WU ; Li SHI ; Wei-Jing LI ; Wei LIU ; Yun FENG ; Shao-Ning YIN ; Cui-Ying HE ; Li-Hong LIU
Journal of Experimental Hematology 2025;33(2):373-378
OBJECTIVE:
To investigate the efficacy and safety of chidamide combined with DICE regimen (cisplatin+ ifosfamide + etoposide + dexamethasone) for relapsed/refractory diffuse large B-cell lymphome(R/R DLBCL).
METHODS:
The clinical data of 31 R/R DLBCL patients treated by chidamide combined with DICE regimen in the Hematology Department of the Fourth Hospital of Hebei Medical University from October 2016 to October 2020 were retrospectively analyzed. The clinical efficacy and adverse events were observed.
RESULTS:
Among the 31 patients, 20 were male and 11 were female. The median age of the patients was 55 (range: 27-71) years old, 21 cases were < 60 years old, 10 cases were ≥60 years old. 26 cases were refractory and 5 cases were relapsed. There were 13 cases of germinal center B-cell like (GCB), 17 cases of non-GCB, and 1 case had missing Hans type. There were 17 cases of double-expression lymphoma (DEL) and 14 cases of non-DEL. The complete response rate of patients was 38.7%(12/31), the overall response rate was 67.7%(21/31). The median progression-free survival time and the median overall survival time were 9.8(95%CI : 4.048-15.552) months, 13.9(95%CI : 9.294-18.506) months, respectively. Multipvariate analysis showed that GCB and DEL reduced the risk of disease recurrence in R/R DLBCL patients. The main grade 3/4 hematological adverse events in this study were thrombocytopenia, agranulocytosis, anemia and leukopenia.
CONCLUSION
The chidamide combined with DICE regimen is effective in the treatment of R/R DLBCL, and hematological adverse events should be closely monitored.
Humans
;
Lymphoma, Large B-Cell, Diffuse/drug therapy*
;
Middle Aged
;
Female
;
Male
;
Adult
;
Aged
;
Retrospective Studies
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Benzamides/administration & dosage*
;
Aminopyridines/administration & dosage*
;
Etoposide/therapeutic use*
;
Cisplatin/administration & dosage*
;
Ifosfamide/administration & dosage*
;
Dexamethasone/therapeutic use*
4.Exploring the causal relationship between leukocyte telomere length and prostatitis, orchitis, and epididymitis based on a two-sample Mendelian randomization.
Dan-Yang LI ; Shun YU ; Bo-Hui YANG ; Jun-Bao ZHANG ; Guo-Chen YIN ; Lin-Na WU ; Qin-Zuo DONG ; Jin-Long XU ; Shu-Ping NING ; Rong ZHAO
National Journal of Andrology 2025;31(4):306-312
OBJECTIVE:
To investigate the genetic causal relationship of leukocyte telomere length (LTL) with prostatitis, orchitis and epididymitis by two-sample Mendelian randomization (MR).
METHODS:
Using LTL as the exposure factor and prostatitis, orchitis and epididymitis as outcome factors, we mined the Database of Genome-Wide Association Studies (GWAS). Then, we analyzed the causal relationship of LTL with prostatitis, orchitis and epididymitis by Mendelian randomization using inverse variance weighting (IVW) as the main method and weighted median and MR-Egger regression as auxiliary methods, determined the horizontal multiplicity by MR-Egger intercept test, and conducted sensitivity analysis using the leaving-one-out method.
RESULTS:
A total of 121 related single nucleotide polymorphisms (SNPs) were identified in this study. IVW showed LTL to be a risk factor for prostatitis (OR = 1.383, 95% CI: 1.044-1.832, P = 0.024), and for orchitis and epididymitis as well (OR = 1.770, 95% CI: 1.275-2.456, P = 0.000 6).
CONCLUSION
Genetic evidence from Mendelian randomized analysis indicates that shortening of LTL reduces the risk of prostatitis, orchitis and epididymitis.
Humans
;
Male
;
Mendelian Randomization Analysis
;
Epididymitis/genetics*
;
Prostatitis/genetics*
;
Polymorphism, Single Nucleotide
;
Leukocytes
;
Orchitis/genetics*
;
Genome-Wide Association Study
;
Telomere
;
Risk Factors
5.Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways.
Min LI ; Zhu-Jun YIN ; Li LI ; Yun-Yun QUAN ; Ting WANG ; Xin ZHU ; Rui-Rong TAN ; Jin ZENG ; Hua HUA ; Qin-Xuan WU ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2025;31(7):590-599
OBJECTIVE:
To investigate the anti-inflammatory effect of rutaecarpine (RUT) on monosodium urate crystal (MSU)-induced murine peritonitis in mice and further explored the underlying mechanism of RUT in lipopolysaccharide (LPS)/MSU-induced gout model in vitro.
METHODS:
In MSU-induced mice, 36 male C57BL/6 mice were randomly divided into 6 groups of 8 mice each group, including the control group, model group, RUT low-, medium-, and high-doses groups, and prednisone acetate group. The mice in each group were orally administered the corresponding drugs or vehicle once a day for 7 consecutive days. The gout inflammation model was established by intraperitoneal injection of MSU to evaluate the anti-gout inflammatory effects of RUT. Then the proinflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the proportions of infiltrating neutrophils cytokines were detected by flow cytometry. In LPS/MSU-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and proinflammatory cytokines were measured by ELISA. The percentage of pyroptotic cells were detected by flow cytometry. Respectively, the mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot, the nuclear translocation of nuclear factor κB (NF-κB) p65 was observed by laser confocal imaging. Additionally, surface plasmon resonance (SPR) and molecular docking were applied to validate the binding ability of RUT components to tumor necrosis factor α (TNF-α) targets.
RESULTS:
RUT reduced the levels of infiltrating neutrophils and monocytes and decreased the levels of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6, all P<0.01). In vitro, RUT reduced the production of IL-1β, IL-6 and TNF-α. In addition, RT-PCR revealed the inhibitory effects of RUT on the mRNA levels of IL-1β, IL-6, cyclooxygenase-2 and TNF-α (P<0.05 or P<0.01). Mechanistically, RUT markedly reduced protein expressions of tumor necrosis factor receptor (TNFR), phospho-mitogen-activated protein kinase (p-MAPK), phospho-extracellular signal-regulated kinase, phospho-c-Jun N-terminal kinase, phospho-NF-κB, phospho-kinase α/β, NOD-like receptor thermal protein domain associated protein 3 (NLRPS), cleaved-cysteinyl aspartate specific proteinase-1 and cleaved-gasdermin D in macrophages (P<0.05 or P<0.01). Molecularly, SPR revealed that RUT bound to TNF-α with a calculated equilibrium dissociation constant of 31.7 µmol/L. Molecular docking further confirmed that RUT could interact directly with the TNF-α protein via hydrogen bonding, van der Waals interactions, and carbon-hydrogen bonding.
CONCLUSION
RUT alleviated MSU-induced peritonitis and inhibited the TNFR1-MAPK/NF-κB and NLRP3 inflammasome signaling pathway to attenuate gouty inflammation induced by LPS/MSU in THP-1 macrophages, suggesting that RUT could be a potential therapeutic candidate for gout.
Animals
;
NF-kappa B/metabolism*
;
Male
;
Indole Alkaloids/therapeutic use*
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Inflammation/complications*
;
Uric Acid
;
Quinazolines/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Gout/chemically induced*
;
Inflammasomes/metabolism*
;
Cytokines/metabolism*
;
THP-1 Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Lipopolysaccharides
;
Quinazolinones
6.Influence of Outdoor Light at Night on Early Reproductive Outcomes of In Vitro Fertilization and Its Threshold Effect: Evidence from a Couple-Based Preconception Cohort Study.
Wen Bin FANG ; Ying TANG ; Ya Ning SUN ; Yan Lan TANG ; Yin Yin CHEN ; Ya Wen CAO ; Ji Qi FANG ; Kun Jing HE ; Yu Shan LI ; Ya Ning DAI ; Shuang Shuang BAO ; Peng ZHU ; Shan Shan SHAO ; Fang Biao TAO ; Gui Xia PAN
Biomedical and Environmental Sciences 2025;38(8):1009-1015
7.Finite element analysis of the stability of Mason type Ⅲ radial head fracture fixed with three cross-bridge headless compression screw and locking plate
Hao YIN ; Yan LI ; Gai ZHAO ; Jie XIE ; Ren-De NING ; En-Chang ZHOU
China Journal of Orthopaedics and Traumatology 2024;37(1):57-60
Objective To compare the biomechanical stability of three cross-bridge headless compression screws and lock-ing plates in the fixation of Mason type Ⅲ radial head fractures by finite element method.Methods Using reverse modeling technology,the radial CT data and internal fixation data of a healthy 25-year-old male were imported into the relevant software.Three-dimensional finite element model of 3 cross-bridge headless compression screws and locking plates for Mason Ⅲ radial head fractures were established,and the radial head was loaded with 100 N axial loading.The maximum displacement,maxi-mum Von Mises stress and stress distribution of the two groups were compared.Results The maximum displacements of the three cross-bridge screws group and locking plate group were 0.069 mm and 0.087 mm respectively,and the Von Mises stress peaks were 18.59 MPa and 31.85 MPa respectively.The stress distribution of the three screws group was more uniform.Con-clusion Both internal fixation methods can provide good fixation effect.CoMPared with the locking plate fixation method,the 3 cross-bridge headless compression screws fixation is more stable and the stress distribution is more uniform.
8.Gene mutation characteristics of clinical stage ⅠA lung adenocarcinoma and their relations with patients′ long-term prognosis
Li ZHANG ; Mengwen LIU ; Lin LI ; Shuang ZHAO ; Lihong WU ; Zhaohua YIN ; Meng LI ; Yanning GAO ; Ning WU
Chinese Journal of Oncology 2024;46(8):755-763
Objective:To explore the gene mutation characteristics and the relationship between gene mutations and long-term prognosis in clinical stage ⅠA lung adenocarcinoma patients.Methods:A retrospective analysis was conducted on 63 clinical stage ⅠA lung adenocarcinoma patients who underwent surgical resection at the Cancer Hospital of the Chinese Academy of Medical Sciences from January 2007 to October 2012, with documented postoperative recurrence or metastasis, as well as those who had a follow-up duration of 10 years or more without recurrence or metastasis. Whole exome sequencing (WES) technology was used to analyze the gene mutation profiles in tumor tissues and univariate and multivariate Cox regression analysis were used to clarify the influencing factors for patient prognosis.Results:After long term follow-up, 13 out of the 63 patients (21%) experienced recurrence or metastasis. WES technology analysis revealed that the most common tumor related gene mutations occurred in epidermal growth factor receptor (EGFR), with a mutation rate of 65.1% (41/63), followed by tumor protein p53 (TP53), fatatypical cadherin 1 (FAT1), low density lipoprotein receptor-related protein 1B (LRP1B), mechanistic target of rapamycin (MTOR), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma (PIK3CG), and SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 4 (SMARCA4), with mutation rates of 30.2% (19/63), 20.6% (13/63), 15.9% (10/63), 15.9% (10/63), 15.9% (10/63), and 15.9% (10/63), respectively. Multivariate Cox regression analysis showed that PIK3CG mutations ( HR=21.52, 95% CI: 3.19-145.01),smoothened (SMO) mutations ( HR=35.28, 95% CI: 3.12-398.39), catenin beta 1 (CTNNB1) mutations ( HR=332.86, 95% CI: 15.76-7 029.05), colony stimulating factor 1 receptor (CSF1R) mutations ( HR=8 109.60, 95% CI: 114.19-575 955.17), and v-Raf murine sarcoma viral oncogene homolog B (BRAF) mutations ( HR=23.65, 95% CI: 1.86-300.43) were independent risk factors affecting the prognosis of clinical stage ⅠA lung adenocarcinoma patients. Conclusions:PIK3CG, SMO, CTNNB1, CSF1R, BRAF gene mutations are closely related to long-term recurrence or metastasis in clinical stage ⅠA lung adenocarcinoma. Patients with these gene mutations should be given closer clinical attention.
9.A Study on Brain Functional Connectivity in Patients With Disorders of Consciousness Based on Auditory Stimulation
Ning YIN ; Fan YANG ; Zhong-Zhen LI ; Ya-Mei HAN ; Ji-Cheng LI ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2024;51(6):1434-1444
Objective At present, the grading evaluation of patients with disorders of consciousness (DOC) is still a focus and difficulty in related fields. Electroencephalogram (EEG) can directly read and continuously reflect scalp electrical activity generated by brain tissue structure, with high temporal resolution. Auditory stimulation is easy to operate and has broad application prospects in clinical detection of DOC. The causal network can intuitively reflect the direction of information transmission through the causal relationship between time series, helping us better understand the information interaction between different regions of the brain of patients. This paper combines EEG and causal networks to explore the differences in brain functional connectivity between patients with unresponsive arousal syndrome (VS) and those with minimum state of consciousness (MCS) under auditory stimulation. MethodsA total of 23 DOC patients were included, including 11 MCS patients and 12 VS patients. Based on the Oddball paradigm, auditory naming stimulation was performed on DOC patients and EEG signals of DOC patients were synchronously collected. The brain functional networks were constructed using multivariate Granger causality method, and the differences in node degree, clustering coefficient, global efficiency, and causal flow of the brain networks between MCS patients and VS patients were calculated. The differences in network characteristics of patients with different levels of consciousness under auditory stimulation were compared from the perspective of cooperation between brain regions. ResultsThe causal connectivity between most brain regions in MCS patients was stronger than that in VS patients, and MCS patients had more brain network connectivity edges than VS patients. The average degree (P<0.05), average clustering coefficient, and global efficiency (P<0.05) of MCS patients under naming stimulation were higher than those of VS patients. The difference in out-degree between each node of VS patients was larger, and the difference in in-degree between each node of MCS patients was smaller. The difference in in-degree of MCS patients was more significant than that of VS patients, and the inflow and outflow of information in the brain functional network of MCS patients were stronger than those of VS patients. MCS and VS patients had differences of causal flow in the frontal and temporal lobes, the direction of information transmission in the parietal lobe and central region was not the same, and MCS patients had more electrodes as causal sources than VS patients. ConclusionThe information transmission ability of MCS patients is stronger than that of VS patients under auditory naming stimulation. Compared with VS patients, MCS patients have an increase in the number of electrode channels as the causal source, an increase in information output to other brain regions, and also an increase in the information output within brain regions, which may indicate a better state of consciousness in patients. MCS patients have more electrode channels for information output in the frontal lobe than VS patients, and the number of electrode channels for changing the direction of information transmission in the frontal lobe is the highest. The frontal lobe is closely related to the level of consciousness in patients with consciousness disorders. This study can provide a theoretical basis for the grading evaluation of consciousness levels in DOC patients.
10.Mechanism of Qianyang Yuyin Granules Regulating NR3C2/ROS/ERK Pathway to Alleviate Aldosterone-induced Podocyte Injury
Yin LI ; Fang YUAN ; Junyao XU ; Cheng NING ; Yixuan WANG ; Lichao QIAN ; Haitao LI ; Jie LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(13):95-105
ObjectiveTo investigate the protective mechanism of Qianyang Yuyin granules (QYYY) on aldosterone-induced podocyte injury. MethodA total of 30 C57BL/6J mice were randomly divided into five groups: control group, model group, QYYY low dose (QYYY-L) group, QYYY high dose (QYYY-H) group, and spironolactone (SPL) group, with six mice in each group. Except for the control group, mice were implanted with osmotic minipumps and injected continuously with aldosterone (300 μg·kg-1·d-1) to induce renal injury. The drug administration group was given low and high doses (2.6, 5.2 g·kg-1·d-1) of QYYY and SPL (18 mg·kg-1·d-1) for 28 days. The renal pathological changes of mice were observed by hematoxylin-eosin (HE) staining and Masson staining. The expression levels of Nephrin, Desmin, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cleaved Caspase-3, nuclear receptor subfamily 3 group C member 2 (NR3C2), extracellular regulated protein kinases (ERK), and phospho-ERK (p-ERK) in kidney tissue were detected by Western blot. The apoptosis levels of kidney tissue were detected by TdT-mediated dUTP nick and labeling (TUNEL) staining, and the superoxide dismutase (SOD) levels were detected. In vitro, the mice were divided into five groups: Control group, model group (aldosterone concentration of 200 nmol·L-1), QYYY-L group, QYYY medium dose (QYYY-M) group, and QYYY-H group (25, 50, and 100 mg·L-1). The effect of different concentrations of QYYY on the relative viability of aldosterone-induced podocytes was detected by cell proliferation and viability assay (CCK-8). The expressions of Nephrin, Desmin, Bax, Bcl-2, cleaved Caspase-3, NR3C2, and p-ERK/ERK were detected by Western blot. AnnexinV-FITC/PI flow cytometry was used to detect the apoptosis levels of podocytes. Reactive oxygen species (ROS) in podocytes were observed by DCFH-DA. ResultCompared with the control group, the model group showed structural pathological changes and fibrotic conditions in the kidney, increased apoptosis levels (P<0.01), and decreased SOD levels (P<0.01). Aldosterone concentration at 200 nmol·L-1 showed a significant decrease in podocyte activity (P<0.05). Podocytes in the model group showed structural pathological changes, disordered arrangement of intercellular microfilaments, increased apoptosis levels (P<0.01), and increased intracellular ROS levels (P<0.01). The protein expressions of Nephrin, Bcl-2, and p-ERK/ERK in kidney tissue and podocytes were decreased (P<0.05, P<0.01). The protein expressions of Desmin, Bax, cleaved Caspase-3, and NR3C2 were increased (P<0.05, P<0.01). Compared with the model group, QYYY alleviated the structural damage and fibrosis of the kidney, decreased the apoptosis levels (P<0.05, P<0.01), and enhanced the SOD content of the kidney (P<0.05, P<0.01). QYYY improved the activity of podocytes (P<0.05, P<0.01), restored the foot process structure of podocytes, and decreased apoptosis levels (P<0.01) and ROS levels of podocytes (P<0.01). The protein expressions of Nephrin, Bcl-2, and p-ERK/ERK in kidney tissue and podocytes were increased (P<0.05, P<0.01), and the protein expressions of Desmin, Bax, cleaved Caspase-3, and NR3C2 were down-regulated (P<0.05, P<0.01). ConclusionQYYY improves aldosterone-induced podocyte injury by regulating the NR3C2/ROS/ERK pathway.

Result Analysis
Print
Save
E-mail