1.Applications of Vaterite in Drug Loading and Controlled Release
Xiao-Hui SONG ; Ming-Yu PAN ; Jian-Feng XU ; Zheng-Yu HUANG ; Qing PAN ; Qing-Ning LI
Progress in Biochemistry and Biophysics 2025;52(1):162-181
Currently, the drug delivery system (DDS) based on nanomaterials has become a hot interdisciplinary research topic. One of the core issues is drug loading and controlled release, in which the key lever is carriers. Vaterite, as an inorganic porous nano-material, is one metastable structure of calcium carbonate, full of micro or nano porous. Recently, vaterite has attracted more and more attention, due to its significant advantages, such as rich resources, easy preparations, low cost, simple loading procedures, good biocompatibility and many other good points. Vaterite, gained from suitable preparation strategies, can not only possess the good drug carrying performance, like high loading capacity and stable loading efficiency, but also improve the drug release ability, showing the better drug delivery effects, such as targeting release, pH sensitive release, photothermal controlled release, magnetic assistant release, optothermal controlled release. At the same time, the vaterite carriers, with good safety itself, can protect proteins, enzymes, or other drugs from degradation or inactivation, help imaging or visualization with loading fluorescent drugs in vitro and in vivo, and play synergistic effects with other therapy approaches, like photodynamic therapy, sonodynamic therapy, and thermochemotherapy. Latterly, some renewed reports in drug loading and controlled release have led to their widespread applications in diverse fields, from cell level to clinical studies. This review introduces the basic characteristics of vaterite and briefly summarizes its research history, followed by synthesis strategies. We subsequently highlight recent developments in drug loading and controlled release, with an emphasis on the advantages, quantity capacity, and comparations. Furthermore, new opportunities for using vaterite in cell level and animal level are detailed. Finally, the possible problems and development trends are discussed.
2.Comparison of the clinical efficacy of super pulse thulium laser enucleation of the prostate with "open tunnel" and holmium laser enucleation of the prostate for benign prostatic hyperplasia
Jidong XU ; Ning JIANG ; Jian LI ; Zhikang CAI ; Jianwei LYU ; Chuanyi HU ; Jingcun ZHENG ; Zhonglin CAI ; Huiying CHEN ; Yan GU ; Yuning WANG ; Jiasheng YAN ; Zhong WANG
Journal of Modern Urology 2025;30(1):34-38
[Objective] To compare the clinical efficacy of super pulse thulium laser enucleation of the prostate (SPThuLEP) with "open tunnel" and transurethral holmium laser enucleation of the prostate (HoLEP) in the treatment of benign prostatic hyperplasia (BPH), in order to provide reference for the treatment options of BPH. [Methods] The clinical data of 112 BPH patients treated in our hospital during Jan.2023 and Jul.2023 were retrospectively analyzed, including 65 treated with SPThuLEP with "open tunnel" and 57 with HoLEP.The operation time, postoperative hemoglobin decrease, postoperative bladder irrigation, catheter indwelling time, hospitalization time and complications were compared between the two groups.The changes of maximum urine flow rate (Qmax), international prostate symptom score (IPSS), quality of life score (QoL), postvoid residual (PVR) and prostate-specific antigen (PSA) were compared between the two groups before operation and one month after operation. [Results] All operations were successful without conversion to open or transurethral plasmakinetic resection.The postoperative decrease of hemoglobin in SPThuLEP group was lower than that in HoLEP group [(13.12±6.72) g/L vs. (21.02±6.51) g/L], with statistical difference (P<0.05). There were no significant differences in the operation time [(63.35±15.73) min vs.(61.02±17.55) min], postoperative bladder irrigation time [(1.07±0.45) d vs. (1.06±0.36) d], catheter indwelling time [(2.98±0.56) d vs. (3.01±0.63) d] and hospitalization time [(3.63±0.61) d vs.(3.79±0.76) d] between the two groups (P>0.05). No blood transfusion, secondary bleeding or unplanned hospitalization occurred, and there were no serious complications such as transurethral electroresection syndrome (TURS), urethral stricture and urinary incontinence.One month after operation, the Qmax, IPSS, QoL, PVR and PSA of the two groups were significantly improved compared with those before operation (P<0.05), but with no statistical difference between the two groups (P>0.05). [Conclusion] SPThuLEP with "open tunnel" has comparable efficacy as HoLEP in the treatment of BPH.With advantages of small amount of bleeding and high safety, this minimally invasive technique can be widely popularized in clinical practice.
3.Toxicity and sublethal effects of calcium cyanamide against susceptible strains of Aedes albopictus
Luyang ZHENG ; Huiyi XU ; Qingqiu WEN ; Ning ZHOU ; Xueli ZHENG
Chinese Journal of Schistosomiasis Control 2025;37(2):196-200
Objective To examine the toxicity and sublethal effects of calcium cyanamide against susceptible isolates of Aedes albopictus, so as to provide insights into rational use of calcium cyanamide for integrated management of Ae. albopictus. Methods The sublethal concentrations [30% lethal concentration (LC30) and median lethal concentration (LC50)] of calcium cyana mide against susceptible strains of Ae. albopictus were determined using the larval immersion test. With 100 mL of dechlorinated water as the control group, after the larvae of susceptible strains of Ae. albopictus were immersed in calcium cyanamide for 24 hours, the pupation rate, pupation duration, emergence rate, number of eggs laid, percentage of eggs hatched, and lifespan of Ae. albopictus were calculated and compared post-treatment with calcium cyanamide at different sublethal concentrations. The midgut tissues of larvae of susceptible strains of Ae. albopictus treated with 100 mg/L calcium cyanamide were sampled for pathological sectioning to observe midgut tissue damages. To evaluate the residual activity, 100 larvae of susceptible strains of Ae. albopictus were treated with 200 mg/L and 500 mg/L calcium cyanamide, and the mortality of larvae was calculated every 24 hour, with dead larvae replaced until no larval death. Results The regression equation for the toxicity of calcium cyanamide against larvae of susceptible strains of Ae. albopictus was y = -9.441 + 4.657x, with an LC50 of 106.42 mg/L [95% confidence interval (CI): (94.64, 118.36) mg/L] and an LC30 of 82.17 mg/L [95% CI: (94.64, 118.36) mg/L], respectively. After larvae of susceptible strains of Ae. albopictus were treated with sublethal concentrations (LC30 and LC50) of calcium cyanamide for 24 hours, there were reduced pupation and emergence rates of larvae (all P values < 0.000 1), prolonged pupal stage (both P values < 0.000 1), reduced numbers of eggs laid by survival female Ae. albopictus (both P values < 0.000 1), reduced percentages of eggs hatched by Ae. albopictus eggs (both P values < 0.000 1), and reduced median survival period of survival female Ae. albopictus (χ2 = 9.36 and 20.33, both P values < 0.01) in the LC30 and LC50 groups relative to the control group. There was a numerical decline in the median survival period of survival female Ae. albopictus in the LC30 groups relative to the control group (χ2 = 2.42, P > 0.05), and there was a significant decline in the median survival period of survival female Ae. albopictus in the LC50 group relative to the control group (χ2 = 11.42, P < 0.01). Histopathological examinations showed severe damages to the midgut tissues of larvae of susceptible strains of Ae. albopictus, and residual activity assay revealed that the mortality of larvae of susceptible strains of Ae. albopictus was both 0 on day 32 post-treatment with calcium cyanamide at a concentration of 200 mg/L and on day 70 post-treatment with calcium cyanamide at a concentration of 500 mg/L, showing complete loss of the larvicidal activity of calcium cyanamide. Conclusions Calcium cyanamide is highly toxic against susceptible strains of Ae. albopictus, and calcium cyanamide at sublethal concentrations (LC30 and LC50) may inhibit growth, development, and reproductive capability of susceptible strains of Ae. albopictus, and shorten the lifespan of adult mosquitoes.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
6.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Research progress on flexible sensors in oral health monitoring
HUANG Jingwen ; HAN Shuang ; ZHENG Yi ; MA Ning
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(7):612-618
Oral health is closely related to facial aesthetics, mastication, pronunciation, and systemic diseases. Flexible sensors can improve current deficiencies in clinical diagnosis and treatment through oral health monitoring. This paper reviews the research on and application of flexible sensors in oral health monitoring in recent years, providing a reference for the further development of flexible sensors in the oral field. The structural basis of flexible sensors includes a flexible substrate, stretchable electrodes, and an active layer, and each part is designed through material selection to adapt to the oral environment. The sensing mechanisms of sensors involve electricity, optics, electrochemistry, and immunology, among which electro-chemical, biological, and optical sensors are particularly prominent in the oral field. The monitored signals include physical signals such as orthodontic force, bite force, respiratory humidity, and implant temperature; chemical signals such as saliva metabolites and oral gases; and biological signals such as periodontal disease and oral cancer markers. At present, flexible sensors still face many challenges in this special oral environment. Future research directions include improving the biocompatibility, moisture resistance, and flexible fitting ability of sensors in the oral cavity; using temperature-insensitive materials and protective films to improve stability; and introducing artificial receptors and sensor arrays to improve factors such as selectivity. In addition, multi-disciplinary cooperation is crucial for breaking through current bottlenecks and achieving more accurate disease diagnosis and health monitoring. In the field of stomatology, finding specific biomarkers related to corresponding oral diseases is the key to sensor health monitoring. Through these efforts, flexible sensors are expected to gain more extensive applications in the field of oral health monitoring.
8.Analysis of pollution of PM 2.5 in children s bedrooms caused by using solid fuels and the influencing factors
ZHENG Ping, SHI Chunli, XIN Shuzhi, CHEN Shunqiang, SHEN Yue, ZHANG Bei, XU Ning, WANG Qiang
Chinese Journal of School Health 2025;46(7):932-936
Objective:
To investigate the indoor fine particulate matter (PM 2.5 ) pollution and its influencing factors in children s bedrooms using solid fuel, so as to provide evidence for effective strategy to reduce PM 2.5 pollution.
Methods:
From December 2019 to November 2020, 198 households (108 in the north, 90 in the south) from two pilots in the north(Jiamusi in Heilongjiang Province) and south of China (Mianyang in Sichuan Province) were selected, and status of solid fuels using were obtained through home visits, dynamic changes in PM 2.5 concentrations in children s bedrooms were monitored by using real time online instruments, and the influencing factors of PM 2.5 pollution were analyzed by using a mixed effects model.
Results:
During the monitoring period, the daily PM 2.5 concentrations in the northern and southern pilot were 78.33 (40.50, 154.80) and 38.54(26.20, 58.46) μg/m 3, respectively, exceeding standard rates of 44.57% and 33.22%. During the heating period, the daily PM 2.5 concentrations in the northern and southern pilot were 212.50(133.60,244.10) and 104.42(73.97, 134.90) μg/m 3, respectively, with over standard rates of 96.75% and 86.96%. The mixed effects model analysis results showed that children s bedroom PM 2.5 concentrations were associated with solid fuel usage duration, window opening time, room layout (shared entrance door between kitchen and bedroom), indoor smoking, indoor humidity, and solid fuel use in the bedroom ( β =0.19, -0.05, 1.20, 0.43, 0.02, 0.35, all P <0.05).
Conclusion
Solid fuel combustion significantly comtributes to PM 2.5 pollution in children s bedrooms, with more pronounced impacts observed in northern China compared to southern regions.
9.Effect of Mori Folium-Ginseng Radix et Rhizoma on Glucose and Lipid Metabolism and Mechanism in Mouse Model of Type 2 Diabetes Mellitus
Congyi LIU ; Ning WANG ; Jingjing XU ; Tingting WANG ; Na ZHENG ; Zimeng HUANG ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):20-28
ObjectiveTo study the effect of the herb pair Mori Folium-Ginseng Radix et Rhizoma (HMG) on glucose and lipid metabolism in the mouse model of type 2 diabetes mellitus and decipher the possible treatment mechanism. MethodsThe db/db mice were chosen as the mouse model of type 2 diabetes mellitus and then treated with HMG at low and high doses (1.56, 3.12 g∙kg-1, respectively) or metformin (0.26 g∙kg-1) by gavage for 6 weeks. The normal group and the model group were treated with double distilled water at the same time according to body weight. The 8-h fasting blood glucose and body weight were measured once a week. The oral glucose tolerance test (OGTT) was conducted at the 6th week of dosing. The mice were sacrificed after the end of dosing. Serum levels of lipids [total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL)], liver function indicators [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)], non-esterified fatty acids (NEFA), glycosylated serum protein (GSP), serum glucose (GLU), fasting insulin (FINS), and renal function indicators [creatinine (Crea) and blood urea nitrogen (BUN)] were measured by enzyme-linked immunosorbent assay. The protein levels of peroxidase proliferator-activating receptor gamma (PPARγ), acetyl coenzyme A carboxylase (ACC), and sterol regulatory element-binding protein-1 (SREBP-1) were determined by Western blot. The pathological changes in the liver and pancreas were examined. ResultsCompared with the normal group, the model group presented increased body weight, elevated levels of blood glucose, TG, TC, AST, ALT, GLU, NEFA, GSP, and HDL-C, up-regulated protein levels of ACC and SREBP-1, and down-regulated protein level of PPARγ (P<0.01). Meanwhile, the model group presented a large amount of lipid droplets and steatosis in the liver, as well as karyopyknosis and lymphocyte infiltration in the pancreas. Compared with the model group, the high- and low-dose HMG groups showed decreased body weight, declined levels of blood glucose, TG, TC, AST, ALT, GLU, NEFA, and GSP, and elevate level of HDL-C (P<0.05, P<0.01). Moreover, the two groups showcased reduced lipid droplets and steatosis in the liver, as well as enlarged islets with clear boundaries and alleviated lymphocyte infiltration and karyopyknosis. Western blot results showed that the high-dose herb pair group demonstrated down-regulated protein levels of ACC and SREBP-1 and up-regulated protein level of PPARγ (P<0.01). ConclusionThe HMG can effectively improve the glucose and lipid metabolism in db/db mice by regulating the expression of PPARγ, SREBP-1, and ACC.
10.Effect of Mori Folium-Ginseng Radix et Rhizoma on Glucose and Lipid Metabolism and Mechanism in Mouse Model of Type 2 Diabetes Mellitus
Congyi LIU ; Ning WANG ; Jingjing XU ; Tingting WANG ; Na ZHENG ; Zimeng HUANG ; Lingling QIN ; Lili WU ; Tonghua LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):20-28
ObjectiveTo study the effect of the herb pair Mori Folium-Ginseng Radix et Rhizoma (HMG) on glucose and lipid metabolism in the mouse model of type 2 diabetes mellitus and decipher the possible treatment mechanism. MethodsThe db/db mice were chosen as the mouse model of type 2 diabetes mellitus and then treated with HMG at low and high doses (1.56, 3.12 g∙kg-1, respectively) or metformin (0.26 g∙kg-1) by gavage for 6 weeks. The normal group and the model group were treated with double distilled water at the same time according to body weight. The 8-h fasting blood glucose and body weight were measured once a week. The oral glucose tolerance test (OGTT) was conducted at the 6th week of dosing. The mice were sacrificed after the end of dosing. Serum levels of lipids [total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL)], liver function indicators [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)], non-esterified fatty acids (NEFA), glycosylated serum protein (GSP), serum glucose (GLU), fasting insulin (FINS), and renal function indicators [creatinine (Crea) and blood urea nitrogen (BUN)] were measured by enzyme-linked immunosorbent assay. The protein levels of peroxidase proliferator-activating receptor gamma (PPARγ), acetyl coenzyme A carboxylase (ACC), and sterol regulatory element-binding protein-1 (SREBP-1) were determined by Western blot. The pathological changes in the liver and pancreas were examined. ResultsCompared with the normal group, the model group presented increased body weight, elevated levels of blood glucose, TG, TC, AST, ALT, GLU, NEFA, GSP, and HDL-C, up-regulated protein levels of ACC and SREBP-1, and down-regulated protein level of PPARγ (P<0.01). Meanwhile, the model group presented a large amount of lipid droplets and steatosis in the liver, as well as karyopyknosis and lymphocyte infiltration in the pancreas. Compared with the model group, the high- and low-dose HMG groups showed decreased body weight, declined levels of blood glucose, TG, TC, AST, ALT, GLU, NEFA, and GSP, and elevate level of HDL-C (P<0.05, P<0.01). Moreover, the two groups showcased reduced lipid droplets and steatosis in the liver, as well as enlarged islets with clear boundaries and alleviated lymphocyte infiltration and karyopyknosis. Western blot results showed that the high-dose herb pair group demonstrated down-regulated protein levels of ACC and SREBP-1 and up-regulated protein level of PPARγ (P<0.01). ConclusionThe HMG can effectively improve the glucose and lipid metabolism in db/db mice by regulating the expression of PPARγ, SREBP-1, and ACC.


Result Analysis
Print
Save
E-mail