1.Hepatitis E virus infection among blood donors in Ningbo
Mingxi PENG ; Yiyu LIU ; Huyan MAO ; Dan LIN ; Lu XIN ; Ning SHU ; Jianfeng HAN ; Feng DING
Chinese Journal of Blood Transfusion 2025;38(1):7-12
[Objective] To investigate the infection status and characteristics of HEV among voluntary blood donors in Ningbo, and to provide a basis for improving the blood screening strategy. [Methods] A total of 12 227 blood samples from voluntary blood donors in Ningbo from June 2022 to May 2023 were tested for HEV serology, enzymology, and nucleic acid testing. Furthermore, HEV gene sequencing was performed for genotyping analysis, and donors with reactive nucleic acid testing results were followed up to confirm their infection status. [Results] The reactivity rate of HEV Ag, anti-HEV IgM and anti-HEV IgG was 0.098%, 0.899% and 29.198%, respectively. There was no difference in the reactivity of anti-HEV IgM and anti-HEV IgG between genders, donation frequencies and donation types (P>0.05). The reactivity rate increased significantly with age (P<0.05). The rate of ALT disqualification (ALT>50U/L) was significantly higher than that in non-reactive samples (P<0.05). The HEV Ag reactivity rate (0.098%) was not correlated with gender, donation frequency, donation type or age. One HEV RNA positive case was found, with a positive rate of 0.008%(1/12 227). It was confirmed to be hepatitis E virus genotype 3 by sequencing analysis. Apart from HEV Ag reactivity, all other blood safety screening items were non-reactive, suggesting this case might be in the acute infection phase. The follow-up results showed that all indicators of the donor's previous blood donation were non-reactive. [Conclusion] Pre-donation ALT detection can reduce the risk of transfusion-transmitted HEV (TT-HEV) to a certain extent, and the effective way to prevent TT-HEV is to detect HEV RNA and serology of donor blood.
2.Influencing factors and clinical treatment of severe complications after unilateral pneumonectomy in treating tuberculous destroyed lung
Xiao LI ; Ning WANG ; Lei BAO ; Zhiqiang WU ; Gang LI ; Cong CAI ; Yijie SONG ; Dan LI ; Banggui WU ; Liangshuang JIANG ; Xiaojun YAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):626-633
Objective To evaluate the surgical efficacy of unilateral pneumonectomy for the treatment of tuberculous destroyed lung, analyze the causes of severe postoperative complications, and explore clinical management strategies. Methods A retrospective analysis was conducted on the clinical data of patients with tuberculous destroyed lung who underwent unilateral pneumonectomy at the Public Health Clinical Center of Chengdu from 2017 to 2023. Postoperative severe complications were statistically analyzed. Patients were divided into a non-severe complication group and a severe-complication group, and the causes, management, and outcomes of complications were analyzed. Results A total of 134 patients were included, comprising 69 males and 65 females, with a mean age of 17-73 (40.43±12.69) years. There were 93 patients undergoing left pneumonectomy and 41 patients undergoing right pneumonectomy. Preoperative sputum smear was positive in 35 patients, all of which converted to negative postoperatively. There were 58 patients with hemoptysis preoperatively, and none experienced hemoptysis postoperatively. Postoperative incisional infection occurred in 8 (5.97%) patients, and postoperative pulmonary infection in 26 (19.40%) patients. Severe postoperative complications occurred in 17 (12.69%) patients, including empyema in 9 (6.72%) patients, bronchopleural fistula with empyema in 1 (0.75%) patient, severe pneumonia in 3 (2.24%) patients, postpneumonectomy syndrome in 1 (0.75%) patient, chylothorax in 1 (0.75%) patient, ketoacidosis in 1 (0.75%) patient, and heart failure with severe pneumonia in 1 (0.75%) patient. Perioperative mortality occurred in 2 (1.49%) patients, both of whom underwent right pneumonectomy. Multivariate logistic regression analysis revealed that a history of ipsilateral thoracic surgery, concomitant Aspergillus infection, and greater blood loss were independent risk factors for severe complications following unilateral pneumonectomy for tuberculous destroyed lung (P<0.05). Conclusion Unilateral pneumonectomy for patients with tuberculous destroyed lung can significantly improve the clinical cure rate, sputum conversion rate, and hemoptysis cessation rate. However, there is a certain risk of severe perioperative complications and mortality, requiring thorough perioperative management and appropriate management of postoperative complications.
3.Application research of PGT in blocking the inheritance of novel mutations in the PKHD1 gene in autoso-mal recessive polycystic kidney disease pedigrees
Ning WANG ; Yan HAO ; Dawei CHEN ; Zhiguo ZHANG ; Dan KUANG ; Qing ZHANG ; Yiqi YING ; Zhaolian WEI ; Ping ZHOU ; Yunxia CAO
The Journal of Practical Medicine 2024;40(7):1006-1010
Objective To investigate the application value of single nucleotide polymorphism(SNP)linkage analysis based on next-generation sequencing(NGS)technology in preimplantation genetic testing(PGT)of families with autosomal recessive polycystic kidney disease(ARPKD).Methods A family with ARPKD was selected,where the female member had a pregnancy ultrasound revealing polycystic kidney in the fetus.Genetic testing showed compound heterozygous mutations of the polycystic kidney/polycystic liver disease 1 gene(PKHD1),c.10444C>T(paternal)and c.4303del(maternal),with the c.4303del mutation being reported for the first time.Targeting the coding region of the PKHD1 gene,335 high-density tightly linked SNP sites were selected in the upstream and downstream 2M regions using multiplex polymerase chain reaction(PCR)and NGS.The couple′s SNP risk haplotypes carrying gene mutations were constructed.After in vitro fertilization,blastocyst culture was performed.Trophoblastic cells obtained from the biopsy were subjected to whole-genome amplification,and NGS was used for linkage analysis and low-depth chromosomal aneuploidy screening of the embryos.Sanger sequencing was used to verify the results of embryo linkage analysis.Results Among the 6 biopsied embryos,4 were mutation-free and euploid,1 exhibited heterozygous for the mutation and mosaic while another unstable sequencing data,making it impossible to judge.One of the mutation-free and developmentally healthy euploid embryos was implanted into the maternal uterus,resulting in the full-term delivery of a healthy baby.Conclusion Application of NGS-based SNP linkage analysis in PGT can effectively blocking the vertical transmission of ARPKD within families,while avoiding abortion issues caused by aneuploid embryos.This study is also the first PGT report target-ing the PKHD1 gene c.4303del mutation.
4.Exploration and practice of smart hospital based on new diagnosis and treatment model
Hanliang DAN ; Zongyi LI ; Ning ZENG ; Rongrong NIE ; Haijiao ZHANG ; Fen TANG
Modern Hospital 2024;24(1):84-87
As the state vigorously promotes the high-quality development of hospitals and improves people's medical ex-perience,the patient-centered hospital should make full use of technological resources such as the Internet,5 G and artificial in-telligence,vigorously develop mobile medical services and artificial intelligence services,transform and optimize the diagnosis and treatment process,and streamline all links before,during and after diagnosis so as to provide better data services to the pa-tient to ensure that they can get things done with greater ease.The patients'medical experience and hospital management effi-ciency can be greatly improved.In this study,specific measures to create a new diagnosis and treatment model through the con-struction of smart hospital platform were expounded in order to provide references for related research and policy formulation of other Chinese medical institutions.
5.Mechanism of Osteosarcopenia and Its Control by Exercise
Dan JIN ; Xin-Yu DAI ; Miao LIU ; Xue-Jie YI ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(5):1105-1118
Osteosarcopenia (OS) is a multifactorial, multiaetiologic degenerative metabolic syndrome in which sarcopenia coexists with osteoporosis, and its influences are related to aging-induced mechanics, genetics, inflammatory factors, endocrine disorders, and irregular lifestyles. With the accelerated aging process in our country, osteosarcopenia has become a public health problem that cannot be ignored, with a higher risk of falls, fractures, impaired mobility and death. In recent years, scholars at home and abroad have conducted a lot of research on osteosarcopenia, but their pathogenesis is still unclear. Understanding the signaling pathways associated with osteosarcopenia is of great significance for further research on the pathogenesis of these disorders and for finding new targets for treatment. Studies have shown that activation of the PI3K/Akt signaling pathway promotes osteoblast differentiation as well as skeletal muscle regeneration, indicating that inhibition of thePI3K/Akt signaling pathway is closely related to the development of osteosarcopenia. Muscle factor-mechanical stress interactions can maintain osteoblast viability by activating the Wnt/β-catenin signaling pathway, suggesting that Wnt signaling is important in muscle and bone crosstalk. The Notch signaling pathway also plays an important role in improving bone and muscle mass and function, but different researchers hold different views, which need to be further validated and refined in subsequent studies. Exercise, as an existing non-pharmacological treatment with strong and sustained effects on physical function and muscle strength, also significantly increases bone density in osteoporosis patients, which may be mainly due to the fact that exercise induces changes in the form and function of bones, in the form of muscular pulling and indirectly improves the bone mass, and changes in the bone strength can also change the number, shape as well as the function of the muscles. At the same time, the mechanism of different exercise modalities focuses on different aspects, and there are differences in exercise time, exercise intensity, and therapeutic effects in the implementation of interventions. Aerobic exercise can improve the quality of skeletal muscle and increase the expression of osteogenesis-related genes by stimulating mitochondrial biosynthesis, as well as improve the quality and strength of bones and muscles through the Wnt/β- catenin and PI3K/Akt signaling pathways, effectively preventing and controlling the occurrence of musculoskeletal disorders. High-intensity resistance exercise has a significant effect on improving the quality of muscles and bone mineral density, but older people with osteosarcopenia suffer from a decline in muscle quality and strength, and a decline in bone mineral density, which makes them very susceptible to fracture, so they should select the intensity of the training in a gradual and orderly manner, from small to large. What kind of exercise intensity and exercise modalities are most effective in improving the occurrence and development of osteosarcopenia needs to be further investigated. Therefore, this paper mainly reviews the epidemiology of osteosarcopenia, diagnostic criteria, the related signaling pathways (PI3K/Akt pathway, Wnt/β-catenin pathway, Notch pathway, NF-κB pathway) that jointly regulate the metabolic process of myocytes and skeletal cells, as well as the interventional effects of different exercise modes on osteosarcopenia, with the aim of providing theoretical bases for the clinical treatment of osteosarcopenia, as well as enhancing the preventive capacity of the disease in old age.
6.The Role and Possible Mechanisms of Exercise in Combating Osteoporosis by Modulating The Bone Autophagy Pathway
Xin-Yu DAI ; Bin LI ; Dan JIN ; Xue-Jie YI ; Rui-Qi HUANG ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(7):1589-1603
Osteoporosis leads to an imbalance in bone remodelling, where bone resorption is greater than bone formation and osteoclast degradation increases, resulting in severe bone loss. Autophagy is a lysosomal degradation pathway that regulates the proliferation, differentiation, and apoptosis of various bone cells (including osteoblasts, osteoclasts, and osteoclasts), and is deeply involved in the bone remodelling process. In recent years, the role of autophagy in the progression of osteoporosis and related bone metabolic diseases has received more and more attention, and it has become a research hotspot in this field. Summarising the existing studies, it is found that senile osteoporosis is the result of a combination of factors. On the one hand, it is the imbalance of bone remodelling and the increase of bone resorption/bone formation ratio with ageing, which causes progressive bone loss. On the other hand, aging leads to a general decrease in the level of autophagy, a decrease in the activity of osteoblasts and osteoclasts, and an inhibition of osteogenic differentiation. The lack of oestrogen leads to the immune system being in a low activation state, and the antioxidant capacity is weakened and inflammatory response is increased, inducing autophagy-related proteins to participate in the transmission of inflammatory signals, excessive accumulation of reactive oxygen species (ROS) in the skeleton, and negatively regulating bone formation. In addition, with aging and the occurrence of related diseases, glucocorticoid treatments also mediate autophagy in bone tissue cells, contributing to the decline in bone strength. Exercise, as an effective means of combating osteoporosis, improves bone biomechanical properties and increases bone density. It has been found that exercise induces oxidative stress, energy imbalance, protein defolding and increased intracellular calcium ions in the organism, which in turn activates autophagy. In bone, exercise of different intensities activates messengers such as ROS, PI3K, and AMP. These messengers signal downstream cascades, which in turn induce autophagy to restore dynamic homeostasis in vivo. During exercise, increased production of AMP, PI3K, and ROS activate their downstream effectors, AMPK, Akt, and p38MAPK, respectively, and these molecules in turn lead to activation of the autophagy pathway. Activation of AMPK inhibits mTOR activity and phosphorylates ULK1 at different sites, inducing autophagy. AMPK and p38 up-regulate per-PGC-1α activity and activate transcription factors in the nucleus, resulting in increased autophagy and lysosomal genes. Together, they activate FoxOs, whose transcriptional activity controls cellular processes including autophagy and can act on autophagy key proteins, while FoxOs proteins are expressed in osteoblasts. Exercise also regulates the expression of mTORC1, FoxO1, and PGC-1 through the PI3K/Akt signalling pathway, which ultimately plays a role in the differentiation and proliferation of osteoblasts and regulates bone metabolism. In addition, BMPs signaling pathway and long chain non-coding RNAs also play a role in the proliferation and differentiation of osteoblasts and autophagy process under exercise stimulation. Therefore, exercise may become a new molecular regulatory mechanism to improve osteoporosis through the bone autophagy pathway, but the specific mechanism needs to be further investigated. How exercise affects bone autophagy and thus prevents and treats bone-related diseases will become a future research hotspot in the fields of biology, sports medicine and sports science, and it is believed that future studies will further reveal its mechanism and provide new theoretical basis and ideas.
7.Application of Histone Deacetylase Inhibitor in Acute Myeloid Leukemia
Dan-Dan CHEN ; Ke-Ning QIN ; Chun-Li LÜ ; Jian-Ye ZENG ; Xiao-Min WANG
Progress in Biochemistry and Biophysics 2024;51(6):1393-1405
Acute myeloid leukemia (AML) is a malignant clonal disease of hematopoietic stem cells, characterized by the proliferation of abnormal primordial cells of myeloid origin in bone marrow, blood and other tissues. At present, the standard induction therapy for AML mainly includes “3+7” standard treatment(anthracycline combined with cytarabine), allogeneic hematopoietic stem cell transplantation (Allo-HSCT) and targeted drug therapy. However, AML cells usually express high levels of P-glycoprotein, which mediates the efflux of chemotherapeutic drugs, which makes AML cells resistant to chemotherapy, resulting in many patients who are not sensitive to chemotherapy or relapse after complete remission. And some patients can not tolerate intensive therapy or lack of donors and can not use Allo-HSCT therapy. Therefore, it is of great clinical significance to find new drugs to improve the efficacy of AML patients. Epigenetic disorders play a key role in the pathogenesis of many diseases, especially cancer. Studies have shown that most AML patients have epigenetic regulatory gene mutations, such as DNMT3A, IDH and TET2, and these mutations are potentially reversible, which has become one of the therapeutic targets of AML. Histone deacetylase inhibitors (HDACi) can regulate the balance between histone acetylation and deacetylation, change the expression of proto-oncogenes or tumor suppressor genes that control cancer progression from epigenetics, and play an important role in many kinds of tumor therapy. At present, HDACi has shown the ability to induce differentiation, cell cycle arrest and apoptosis of AML cells. The mechanism may be mainly related to HDACi inducing chromatin conformation opening of tumor suppressor gene by inhibiting HDAC activity, promoting oncogene damage and preventing oncogene fusion protein from recruiting HDAC. Although the preclinical outcome of HDACi is promising, it is not as effective as the conventional therapy of AML. However, the combination strategy with various anticancer drugs is in clinical trials, showing significant anti-AML activity, improving efficacy through key targeting pathways in a typical synergistic or additive way, increasing AML sensitivity to chemotherapy, reducing tumor growth and metastasis potential, inhibiting cell mitotic activity, inducing cell apoptosis, regulating bone marrow microenvironment, which provides a good choice for the treatment of AML. Especially for those AML patients who are not suitable for intensive therapy and drug resistance to chemotherapy. This review introduces the relationship between HDAC and cancer; the classification of HDAC and its function in AML; the correlation between HDAC and AML; the clinical application of five types of HDACi; preclinical research results and clinical application progress of six kinds of HDACi in AML, such as Vrinota, Belinostat, Panobinostat, Valproic acid, Entinostat, and Chidamide, the mechanism of HDACi combined with other anticancer drugs in AML indicates that the current HDACi is mainly aimed at various subtypes of pan-HDAC inhibitors, with obvious side effects, such as fatigue, thrombocytopenia, nausea, vomiting, diarrhea. In recent years, the next generation of HDACi is mainly focused on the selectivity of analogues or isomers. Finding the best combination of HDACi and other drugs and the best timing of administration to balance the efficacy and adverse reactions is a major challenge in the treatment of AML, and the continued development of selective HDACi with less side effects and more accurate location is the key point for the development of this drug in the future. It is expected to provide reference for clinical treatment of AML.
8.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
9.JIA Hongxiao's Clinical Experience in Treating Cognitive Impairments in Schizophrenia based on Five Spirits Stored in Corresponding Viscera Theory
Yanzhe NING ; Xia YIN ; Sitong FENG ; Dan WANG ;
Journal of Traditional Chinese Medicine 2024;65(4):352-356
This paper summarized professor JIA Hongxiao's experience in treating cognitive impairments in schizophrenia patients upon five spirits stored in corresponding viscera theory. By elucidating the cognitive psychological connotation of the five spirits stored in corresponding viscera theory, it is proposed that the cognitive impairment of schizophrenia should be differentiated and treated based on the symptom characteristics of different cognitive domain impairments in schizophrenia. The key pathogenesis of impairments to cognitive domains such as information processing speed, executive control ability and will is kidney deficiency, liver hyperactivity, and heart spirit restlessness, for which the treatment is to boost the kidney and calm the liver, nourish the heart and calm the mind, using Shizhen Anshen Formula (石珍安神方) modifications. The main pathogenesis of memory and attention cognitive impairment is spleen-kidney depletion and lung corporeal soul failing to descend, for which it is suggested to fortify the spleen and supplement kidney, boost lung and direct qi downward using Jianpi Bushen Formula (健脾补肾方) modifications.
10.Early experience with mechanical hemodynamic support for catheter ablation of malignant ventricular tachycardia
Mengmeng LI ; Yang YANG ; Deyong LONG ; Chenxi JIANG ; Ribo TANG ; Caihua SANG ; Wei WANG ; Xin ZHAO ; Xueyuan GUO ; Songnan LI ; Changyi LI ; Man NING ; Changqi JIA ; Li FENG ; Dan WEN ; Hui ZHU ; Yuexin JIANG ; Fang LIU ; Tong LIU ; Jianzeng DONG ; Changsheng MA
Chinese Journal of Cardiology 2024;52(7):768-776
Objective:To explore the role of mechanical hemodynamic support (MHS) in mapping and catheter ablation of patients with hemodynamically unstable ventricular tachycardia (VT), report single-center experience in a cohort of consecutive patients receiving VT ablation during MHS therapy, and provide evidence-based medical evidence for clinical practice.Methods:This was a retrospective cohort study. Patients with hemodynamically unstable VT who underwent catheter ablation with MHS at Beijing Anzhen Hospital, Capital Medical University between August 2021 and December 2023 were included. Patients were divided into rescue group and preventive group according to the purpose of treatment. Their demographic data, periprocedural details, and clinical outcomes were collected and analyzed.Results:A total of 15 patients with hemodynamically unstable VT were included (8 patients in the rescue group and 7 patients in the preventive group). The acute procedure was successful in all patients. One patient in the rescue group had surgical left ventricular assist device (LVAD) implantation, remaining 14 patients received extracorporeal membrane oxygenation (ECMO) for circulation support. ECMO decannulation was performed in 12 patients due to clinical and hemodynamic stability, of which 6 patients were decannulation immediately after surgery and the remaining patients were decannulation at 2.0 (2.5) d after surgery. Two patients in the rescue group died during the index admission due to refractory heart failure and cerebral hemorrhage. During a median follow-up of 30 d (1 d to 12 months), one patient with LVAD had one episode of ventricular fibrillation at 6 months after discharge, and no further episodes of ventricular fibrillation and/or VT occurred after treatment with antiarrhythmic drugs. No malignant ventricular arrhythmia occurred in the remaining 12 patients who were followed up.Conclusions:MHS contributes to the successful completion of mapping and catheter ablation in patients with hemodynamically unstable VT, providing desirable hemodynamic status for emergency and elective conditions.

Result Analysis
Print
Save
E-mail