1.Cellular localization of NLRP3 inflammasome.
Yan WANG ; Chen YANG ; Kairui MAO ; Shuzhen CHEN ; Guangxun MENG ; Bing SUN
Protein & Cell 2013;4(6):425-431
Inflammasome is a large protein complex activated upon cellular stress or microbial infection, which triggers maturation of pro-inflammatory cytokines interleukin-1β and interleukin-18 through caspase-1 activation. Nod-like receptor family protein 3 (NLRP3) is the most characterized inflammasome activated by various stimuli. However, the mechanism of its activation is unclear and its exact cellular localization is still unknown. We examined the potential co-localization of NLRP3 inflammasome with mitochondria and seven other organelles under adenosine triphosphate, nigericin or monosodium urate stimulation in mouse peritoneal macrophages using confocal microscopy approach. Our results revealed that the activated endogenous apoptosis-associated speck-like protein containing a CARD (ASC) pyroptosome forms in the cytoplasm and co-localizes with NLRP3 and caspase-1, but not with any of the organelles screened. This study indicates that the ASC pyroptosome universally localizes within the cytoplasm rather than with any specific organelles.
Adenosine Triphosphate
;
pharmacology
;
Animals
;
Apoptosis Regulatory Proteins
;
CARD Signaling Adaptor Proteins
;
Carrier Proteins
;
analysis
;
metabolism
;
Caspase 1
;
analysis
;
metabolism
;
Cytoplasm
;
metabolism
;
Cytoskeletal Proteins
;
analysis
;
metabolism
;
Inflammasomes
;
analysis
;
metabolism
;
Macrophages, Peritoneal
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
Microscopy, Confocal
;
Mitochondria
;
metabolism
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Nigericin
;
pharmacology
;
Uric Acid
;
pharmacology
2.Transfection and anti-HBV effect mediated by the hepatocytes-targeting cationic liposomes co-modified with beta-sitosterol-beta-D-glucoside and Brij 35.
Yuan ZHANG ; Xian-rong QI ; Yan GAO ; Lai WEI
Acta Pharmaceutica Sinica 2006;41(11):1111-1115
AIMTo study the transfection and anti-hepatitis B virus (HBV) effect of the co-modified hepatocytes-targeting cationic liposomes encapsulating anti-HBV antisense oligonucleotides (asON) , and to investigate the transfection mechanisms of the liposomes.
METHODSDipalmitoylphosphatidylcholine (DPPC) and 3beta-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) were used as the lipids, beta-sitosterol-beta-D-glucoside (sito-G) and Brij 35 were used to modify the liposomes. Flow cytometry (FCM), fluorescence microscopy and enzyme-linked immunosorbent assay (ELISA) were utilized to evaluate the transfection improvement of the asON encapsulated in the liposomes in primary rat hepatocytes and the antigens inhibition activity in HepG 2.2.15 cells. The transfection mechanisms were evaluated based on the influence of wortmannin, nigericin, and asialofetuin on the antigens inhibition in HepG 2.2.15 cells by ELISA.
RESULTSThe co-modification with sito-G and Brij 35 significantly improved the transfection of the liposomes in primary rat hepatocytes and antigens inhibition effect in HepG 2.2.15 cells. Both transfection efficiency and antigens inhibition effect showed to be concentration-dependent with the asON-encapsulating liposomes. In fluorescence microscopy, the transfected cells showed strong fluorescence in primary rat hepatocytes, especially in the nuclei. Wortmannin, nigericin and asialofetuin decreased the antigens inhibition of the asON-encapsulating liposomes to different levels. Cationic liposomes modification with sito-G and Brij 35 could improve the transfection and antigens inhibition effect of the asON. The transfection mechanisms of the co-modified liposomes included endocytosis and membrane fusion. The ligand sito-G was confirmed to be able to enhance asialoglycoprotein receptor (ASGPR)-mediated endocytosis.
CONCLUSIONCo-modified hepatocytes-targeting cationic liposomes would be a specific and effective carrier to transfer asON into hepatocytes.
Androstadienes ; pharmacology ; Animals ; Asialoglycoproteins ; pharmacology ; Cell Line, Tumor ; Cell Nucleus ; metabolism ; Cell Survival ; Cells, Cultured ; Endocytosis ; drug effects ; Female ; Fetuins ; Flow Cytometry ; Hepatitis B Antigens ; metabolism ; Hepatitis B virus ; genetics ; immunology ; Hepatocytes ; cytology ; drug effects ; metabolism ; Humans ; Liposomes ; Microscopy, Fluorescence ; Nigericin ; pharmacology ; Oligonucleotides, Antisense ; chemistry ; genetics ; Polyethylene Glycols ; chemistry ; Rats ; Rats, Wistar ; Sitosterols ; chemistry ; Transfection ; methods ; alpha-Fetoproteins ; pharmacology
3.Swelling of the vesicle is prerequisite for PTH secretion.
Sung Kil LIM ; Yi Hyun KWON ; Young Duk SONG ; Hyun Chul LEE ; Kyung Ja RYU ; Kap Bum HUH ; Chun Sik PARK
Yonsei Medical Journal 1996;37(1):59-67
Unlike most secretory cells, high extra cellular calcium inhibits rather than stimulates hormonal secretion in several cells such as parathyroid cells, Juxtaglomerular cells and osteoclast. To gain further insight into the common but unique stimulus-secretion coupling mechanism in these cells, bovine parathyroid slices were incubated in various conditions of Krebs-Ringer (KR) solution containing essential amino acids. Parathyroid cells showed the inverse dependency of secretion on extra cellular calcium concentration as we expected. Ammonium acetate overcame the inhibitory effect of 2.5 mM of calcium and the maximum effect was as much as the five times of the basal value, while there was a little additive effect under 0 mM CaCl2. PTH secretion was biphasic according to the change of extra cellular osmolarity and the lowest response was observed at 300 mOsm/l. In Na-rich KR solution, high concentration of nigericin (> 10(-4)M) completely overcame the inhibitory effect of 2.5 mM CaCl2 and the maximum stimulatory effect was 8 times greater whereas it was only 2 times greater without CaCl2. In K-rich KR solution that abolished the K-gradient between the extra cellular solution and the cytoplasm, the rate of PTH secretion increased, and furthermore the addition of nigericin increased the rate of secretion significantly. The results above suggested that the osmotic swelling of the secretory vesicle in parathyroid cells might promote exocytosis as in Juxtaglomerular cells. We propose that the swelling of the vesicle is also prerequisite for secretion in several cells inhibited paradoxically by Ca++, whatever the signal transduction pathway for swelling of the secretory granules induced by the lowering of Ca++ in cytoplasm are.
Acetates/pharmacology
;
Animal
;
Body Fluids/*metabolism
;
Cattle
;
Cell Membrane Permeability
;
Ionophores/pharmacology
;
Mannitol/pharmacology
;
Nigericin/pharmacology
;
Osmosis
;
Parathyroid Glands/drug effects/*secretion
;
Parathyroid Hormones/*secretion
;
Support, Non-U.S. Gov't

Result Analysis
Print
Save
E-mail