1.Construction of a prognostic prediction model for invasive lung adenocarcinoma based on machine learning
Yanqi CUI ; Jingrong YANG ; Lin NI ; Duohuang LIAN ; Shixin YE ; Yi LIAO ; Jincan ZHANG ; Zhiyong ZENG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):80-86
Objective To determine the prognostic biomarkers and new therapeutic targets of the lung adenocarcinoma (LUAD), based on which to establish a prediction model for the survival of LUAD patients. Methods An integrative analysis was conducted on gene expression and clinicopathologic data of LUAD, which were obtained from the UCSC database. Subsequently, various methods, including screening of differentially expressed genes (DEGs), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA), were employed to analyze the data. Cox regression and least absolute shrinkage and selection operator (LASSO) regression were used to establish an assessment model. Based on this model, we constructed a nomogram to predict the probable survival of LUAD patients at different time points (1-year, 2-year, 3-year, 5-year, and 10-year). Finally, we evaluated the predictive ability of our model using Kaplan-Meier survival curves, receiver operating characteristic (ROC) curves, and time-dependent ROC curves. The validation group further verified the prognostic value of the model. Results The different-grade pathological subtypes' DEGs were mainly enriched in biological processes such as metabolism of xenobiotics by cytochrome P450, natural killer cell-mediated cytotoxicity, antigen processing and presentation, and regulation of enzyme activity, which were closely related to tumor development. Through Cox regression and LASSO regression, we constructed a reliable prediction model consisting of a five-gene panel (MELTF, MAGEA1, FGF19, DKK4, C14ORF105). The model demonstrated excellent specificity and sensitivity in ROC curves, with an area under the curve (AUC) of 0.675. The time-dependent ROC analysis revealed AUC values of 0.893, 0.713, and 0.632 for 1-year, 3-year, and 5-year survival, respectively. The advantage of the model was also verified in the validation group. Additionally, we developed a nomogram that accurately predicted survival, as demonstrated by calibration curves and C-index. Conclusion We have developed a prognostic prediction model for LUAD consisting of five genes. This novel approach offers clinical practitioners a personalized tool for making informed decisions regarding the prognosis of their patients.
2.Chinesization of the HEMO-FISS-QoL questionnaire and its reliability and validity
Songpeng SUN ; Shan JIA ; Fangfang XU ; Tianyu LI ; Zhiyun ZHANG ; Qiaorong CAO ; Xinjian LI ; Yao WU ; Weiping WAN ; Bin SHI ; Jianguo WANG ; Hong NI ; Longyu LIANG ; Xingxiao HUO ; Tianqing YANG ; Lei TIAN ; Ying TIAN ; Mei LIN ; Zhanjun WANG ; Yangyang ZHOU ; Hongchuan CHU ; Riyu LIAO ; Kuerban XIEYIDA ; Junhong LONG ; Shuxin ZHANG
Chinese Journal of Behavioral Medicine and Brain Science 2024;33(1):75-82
Objective:To evaluate the reliability and validity of the Chinese version of HEMO-FISS-QoL(HF-QoL) questionnaire (HF-QoL-C) in the Chinese population with hemorrhoids.Methods:From November 2021 to November 2022, a self-constructed general information questionnaire, HF-QoL-C, and the 36-item short form health survey (SF-36), Goligher classification, and Giordano severity of hemorrhoid symptom questionnaire (GSQ) were used to conduct a questionnaire survey on 760 hemorrhoid patients in the anorectal department of six hospitals. The data was analyzed for reliability and validity using SPSS 21.0 and AMOS 26.0 software.Results:The Cronbach's α coefficient of HF-QoL-C and its dimension ranged from 0.831 to 0.960, and the split coefficient was 0.832-0.915. Four common factors were extracted through principal component exploratory factor analysis. Confirmatory factor analysis indicated acceptable structural validity( χ2/ df=8.152, RSMEA=0.097, CFI=0.881, IFI=0.881, NFI=0.867). HF-QoL-C was correlated with SF36 and GSQ( r=-0.694, 0.501, both P<0.01). There were differences in the total score and dimensional scores of HF-QoL-C between surgical and drug treated patients, different grades of Goligher classification for hemorrhoidal disease, and different ranges of hemorrhoid prolapse (all P<0.001). No ceiling effect was found in the total score and the scores of each dimension(0.3%-2.0%). There was a floor effect in both psychological function and sexual activity dimensions (16.7%, 35.1%). Conclusion:HF-QoL-C has good reliability and validity, which can be used to measure the quality of life of Chinese hemorrhoid patients.
3.Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
Shou-Wu WU ; Shao-Kun LIN ; Zhong-Zhu NIAN ; Xin-Wen WANG ; Wei-Nian LIN ; Li-Ming ZHUANG ; Zhi-Sheng WU ; Zhi-Wei HUANG ; A-Min WANG ; Ni-Li GAO ; Jia-Wen CHEN ; Wen-Ting YUAN ; Kai-Xian LU ; Jun LIAO
Progress in Biochemistry and Biophysics 2024;51(9):2182-2193
ObjectiveTo investigate the effect of mucin 1 (MUC1) on the proliferation and apoptosis of nasopharyngeal carcinoma (NPC) and its regulatory mechanism. MethodsThe 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital. The expression of MUC1 was measured by real-time quantitative PCR (qPCR) in the patients with PNC. The 5-8F and HNE1 cells were transfected with siRNA control (si-control) or siRNA targeting MUC1 (si-MUC1). Cell proliferation was analyzed by cell counting kit-8 and colony formation assay, and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells. The qPCR and ELISA were executed to analyze the levels of TNF-α and IL-6. Western blot was performed to measure the expression of MUC1, NF-кB and apoptosis-related proteins (Bax and Bcl-2). ResultsThe expression of MUC1 was up-regulated in the NPC tissues, and NPC patients with the high MUC1 expression were inclined to EBV infection, growth and metastasis of NPC. Loss of MUC1 restrained malignant features, including the proliferation and apoptosis, downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells. ConclusionDownregulation of MUC1 restrained biological characteristics of malignancy, including cell proliferation and apoptosis, by inactivating NF-κB signaling pathway in NPC.
4.Survey on insomnia and its influencing factors among children and adolescents in Chongqing
Chunmei LIAO ; Lixia LUO ; Ni YAN ; Yuchen ZHANG ; Gang YUAN ; Guoqing JIANG
Sichuan Mental Health 2024;37(5):451-456
Background Sleep disturbances in children and adolescents have become a global public health concern,with pronounced issues in the Western China.Despite this,research on the prevalence of insomnia and its influencing factors among children and adolescents in Chongqing is still lacking.Objective To understand the prevalence of insomnia and analyze its influencing factors among children and adolescents in Chongqing,so as to provide references for clinical interventions and preventive strategies of insomnia.Methods A stratified random sampling method was used to select 9 969 children and adolescents in Chongqing from November to December 2021.Insomnia Severity Index(ISI)and a self-designed questionnaire on awareness of core mental health knowledge were administered.Binary Logistic regression analysis was used to identify the influencing factors of insomnia in this population.Results A total of 3 578 children and adolescents(35.89%)were found to have insomnia symptoms.There were statistically significant differences in the detection of insomnia symptoms among gender,ethnicity,education level,domicile,only-child status,parental education level,introversion/extroversion,parental relationship,average monthly per capita income,family history of mental illness,medical insurance coverage,living situation and understanding of mental health knowledge(P<0.05 or 0.01).Binary Logistic regression analysis identified several risk factors for insomnia,including female gender(OR=1.301,95%CI:1.192~1.419),ethnic minority status(OR=1.163,95%CI:1.015~1.333),junior high school for education level(OR=1.985,95%CI:1.774~2.220),senior high school for education level(OR=3.085,95%CI:2.749~3.462),non-only-child status(OR=1.127,95%CI:1.013~1.253),degree of harmony between parents is not high or not harmonious[(OR=1.846,95%CI:1.669~2.041 for relatively harmonious;OR=2.524,95%CI:2.214~2.877 for generally harmonious;OR=2.452,95%CI:1.999~3.007 for not very harmonious;OR=2.926,95%CI:2.307~3.710 for very discordant)]and incomplete medical insurance coverage(OR=1.218,95%CI:1.093~1.358).Protective factors included an extroverted personality(OR=0.838,95%CI:0.766~0.917),absence of family history of mental illness(OR=0.719,95%CI:0.549~0.941),junior high school for mother's education level(OR=0.822,95%CI:0.734~0.920),senior high school or secondary specialized school for mother's education level(OR=0.862,95%CI:0.752~0.988),college and above for mother's education level(OR=0.748,95%CI:0.633~0.884)and knowledge of mental health(OR=0.854,95%CI:0.778~0.937).Conclusion The problem of insomnia among children and adolescents in Chongqing is quite serious.Risk factors for insomnia include female gender,ethnic minority status,higher education levels,being a non-only child,poor family relationships and incomplete medical insurance.Conversely,an extroverted personality,absence of family history of mental illness,higher maternal education and knowledge of mental health serve as protective factors against insomnia.
5.The clinical value of postoperative platelet-to-neutrophil ratio in predicting the outcome of acute anterior circulation cardiogenic large-vessel occlusion stroke after receiving endovascular treatment
Peng ZUO ; Xiaoyu NI ; Liao WU ; Guihua NI
Journal of Interventional Radiology 2024;33(11):1175-1180
Objective To investigate the clinical value of postoperative platelet-to-neutrophil ratio(PNR)in predicting the prognosis of patients with acute anterior circulation cardiogenic large-vessel occlusion stroke after receiving endovascular treatment.Methods A total of 95 patients with acute anterior circulation cardiogenic large-vessel occlusion stroke,who were admitted to the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University of China from January 2019 to January 2022,were enrolled in this study.Venous blood sampling was performed at admission and within 24 hours after thrombectomy,and the PNR,platelet-white blood cell ratio(PWR),platelet-lymphocyte ratio(PLR),and neutrophil-lymphocyte ratio(NLR)were calculated.According to the modified Rankin Scale score at 90 days(mRS-90),the patients were divided into good prognosis group(mRS-90 ≤2 points,n=45)and poor prognosis group(mRS-90 3-6 points,n=50).The clinical data were compared between the two groups.Multivariate logistic regression analysis was used to analyze the predictors of 90-d good prognosis.The area under the receiver operating characteristic curve(AUC)was used to compare the efficacy of PWR,PNR,and NLR in predicting good prognosis.Results Compared with poor prognosis group,in good prognosis group the patients were younger,the NIHSS score at admission was smaller,the incidence of postoperative contrast extravasation was lower,the postoperative 24-hour PWR and PNR values were higher,and the postoperative 24-hour NLR value was lower,the differences in the above indexes between the two groups were statistically significant(all P<0.05).Multivariate analysis showed that bridging therapy(OR=4.746,P=0.021,95%CI:1.262-17.856),postoperative contrast medium extravasation(OR=0.254,P=0.022,95%CI:0.079-0.824)and postoperative 24-h PNR(OR=1.087,P=0.006,95%CI:1.025-1.153)were the independent predictors for 90-d good prognosis in patients with acute anterior circulation cardiogenic large-vessel occlusion stroke after receiving endovascular treatment.AUCs of postoperative 24-h PWR,PNR and NLR for predicting a good prognosis after thrombectomy were 0.734,0.736 and 0.704 respectively.PNR had the highest predictive efficacy,with a cutoff value of 25.08,a specificity of 84.00%,and a sensitivity of 67.78%.Conclusion In patients with acute anterior circulation cardiogenic large-vessel occlusion stroke after receiving endovascular treatment,a better clinical prognosis can be expected when the patient has a higher postoperative 24-h PNR value.
6.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
7.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
8.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
9.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.

Result Analysis
Print
Save
E-mail