1.Shikimic Acid Promotes Oligodendrocyte Precursor Cell Differentiation and Accelerates Remyelination in Mice.
Fengfeng LU ; Dou YIN ; Yingyan PU ; Weili LIU ; Zhenghao LI ; Qi SHAO ; Cheng HE ; Li CAO
Neuroscience Bulletin 2019;35(3):434-446
The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells (OPCs) to differentiate, since OPCs and oligodendrocyte-lineage cells that are unable to fully differentiate are found in the areas of demyelination. Thus, promoting the differentiation of OPCs is vital for the treatment of demyelinating diseases. Shikimic acid (SA) is mainly derived from star anise, and is reported to have anti-influenza, anti-oxidation, and anti-tumor effects. In the present study, we found that SA significantly promoted the differentiation of cultured rat OPCs without affecting their proliferation and apoptosis. In mice, SA exerted therapeutic effects on experimental autoimmune encephalomyelitis (EAE), such as alleviating clinical EAE scores, inhibiting inflammation, and reducing demyelination in the CNS. SA also promoted the differentiation of OPCs as well as their remyelination after lysolecithin-induced demyelination. Furthermore, we showed that the promotion effect of SA on OPC differentiation was associated with the up-regulation of phosphorylated mTOR. Taken together, our results demonstrated that SA could act as a potential drug candidate for the treatment of demyelinating diseases.
Animals
;
Apoptosis
;
drug effects
;
Cell Differentiation
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Demyelinating Diseases
;
prevention & control
;
Encephalitis
;
prevention & control
;
Encephalomyelitis, Autoimmune, Experimental
;
prevention & control
;
Female
;
Mice, Inbred C57BL
;
Myelin Basic Protein
;
metabolism
;
Neuroprotective Agents
;
administration & dosage
;
Oligodendrocyte Precursor Cells
;
drug effects
;
metabolism
;
Rats
;
Remyelination
;
drug effects
;
Shikimic Acid
;
administration & dosage
;
TOR Serine-Threonine Kinases
;
metabolism
2.Effect of Gastrodin on Early Brain Injury and Neurological Outcome After Subarachnoid Hemorrhage in Rats.
Xinzhi WANG ; Shuyue LI ; Jinbang MA ; Chuangang WANG ; Anzhong CHEN ; Zhenxue XIN ; Jianjun ZHANG
Neuroscience Bulletin 2019;35(3):461-470
Gastrodin is a phenolic glycoside that has been demonstrated to provide neuroprotection in preclinical models of central nervous system disease, but its effect in subarachnoid hemorrhage (SAH) remains unclear. In this study, we showed that intraperitoneal administration of gastrodin (100 mg/kg per day) significantly attenuated the SAH-induced neurological deficit, brain edema, and increased blood-brain barrier permeability in rats. Meanwhile, gastrodin treatment significantly reduced the SAH-induced elevation of glutamate concentration in the cerebrospinal fluid and the intracellular Ca overload. Moreover, gastrodin suppressed the SAH-induced microglial activation, astrocyte activation, and neuronal apoptosis. Mechanistically, gastrodin significantly reduced the oxidative stress and inflammatory response, up-regulated the expression of nuclear factor erythroid 2-related factor 2, heme oxygenase-1, phospho-Akt and B-cell lymphoma 2, and down-regulated the expression of BCL2-associated X protein and cleaved caspase-3. Our results suggested that the administration of gastrodin provides neuroprotection against early brain injury after experimental SAH.
Animals
;
Apoptosis
;
drug effects
;
Astrocytes
;
drug effects
;
metabolism
;
Benzyl Alcohols
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
metabolism
;
Brain
;
drug effects
;
metabolism
;
Brain Edema
;
etiology
;
prevention & control
;
Calcium
;
metabolism
;
Glucosides
;
administration & dosage
;
Glutamic Acid
;
metabolism
;
Male
;
Microglia
;
drug effects
;
metabolism
;
Neurons
;
drug effects
;
Neuroprotective Agents
;
administration & dosage
;
Oxidative Stress
;
drug effects
;
Rats, Sprague-Dawley
;
Subarachnoid Hemorrhage
;
complications
;
metabolism
;
prevention & control
3.Pretreatment of Populus tomentiglandulosa protects hippocampal CA1 pyramidal neurons from ischemia-reperfusion injury in gerbils via increasing SODs expressions and maintaining BDNF and IGF-I expressions.
Tae-Kyeong LEE ; Joon Ha PARK ; Ji Hyeon AHN ; Hyunjung KIM ; Minah SONG ; Jae-Chul LEE ; Jong Dai KIM ; Yong Hwan JEON ; Jung Hoon CHOI ; Choong Hyun LEE ; In Koo HWANG ; Bing-Chun YAN ; Moo-Ho WON ; Il Jun KANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(6):424-434
To examine the effects of Populus tomentiglandulosa (PT) extract on the expressions of antioxidant enzymes and neurotrophic factors in the cornu ammonis 1 (CA1) region of the hippocampus at 5 min after inducing transient global cerebral ischemia (TGCI) in gerbils, TGCI was induced by occlusion of common carotid arteries for 5 min. Before ischemic surgery, 200 mg·kg PT extract was orally administrated once daily for 7 d. We performed neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B staining. Furthermore, we determined in situ production of superoxide anion radical, expression levels of SOD1 and SOD2 as antioxidant enzymes and brain-derived neurotrophic factor (BDNF) and insulin-like growth factor I (IGF-I) as neurotrophic factors. Pretreatment with 200 mg·kg PT extract prevented neuronal death (loss). Furthermore, pretreatment with 200 mg·kg PT extract significantly inhibited the production of superoxide anion radical, increased expressions of SODs and maintained expressions of BDNF and IGF-I. Such increased expressions of SODs were maintained in the neurons after IRI. In summary, pretreated PT extract can significantly increase levels of SODs and protect the neurons against TGCI, suggesting that PT can be a useful natural agent to protect against TGCI.
Animals
;
Brain-Derived Neurotrophic Factor
;
genetics
;
metabolism
;
CA1 Region, Hippocampal
;
drug effects
;
metabolism
;
Gerbillinae
;
Humans
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Male
;
Neuroprotective Agents
;
administration & dosage
;
Plant Extracts
;
administration & dosage
;
Populus
;
chemistry
;
Pyramidal Cells
;
drug effects
;
metabolism
;
Reperfusion Injury
;
drug therapy
;
genetics
;
metabolism
;
Superoxide Dismutase
;
genetics
;
metabolism
;
Up-Regulation
;
drug effects
4.Preliminary optimization of a Chinese herbal medicine formula based on the neuroprotective effects in a rat model of rotenone-induced Parkinson's disease.
Xu-Xia BAO ; Hui-Han MA ; Hao DING ; Wen-Wei LI ; Min ZHU
Journal of Integrative Medicine 2018;16(4):290-296
OBJECTIVEThe main objective of this study was to preliminarily determine the optimum formulation of a Chinese herbal formula that may have neuroprotective effects against rotenone-induced Parkinson's disease (PD).
METHODSSeven recipes were made from Dihuang (DH, Rehmannia glutinosa Libosch), Roucongrong (RCR, Cistanche deserticola Y.C.Ma), Niuxi (NX, Achyranthes bidentata Bl.) and Shanzhuyu (SZY, Cornus officinalis Sieb. et Zucc) in different proportions, according to the principles of uniform design (4 factors 7 levels). Tyrosine hydroxylase (TH)-positive neurons in substantia nigra pars compacta (SNpc) were detected by immunohistochemistry and rotenone-exposure days necessary to induce PD symptoms were recorded. To probe one likely mechanism of the formulas, echinacoside (ECH) concentrations of all seven recipes were determined by high-performance liquid chromatography and related to number of TH-positive neurons.
RESULTSThe data showed that recipe 4 (DH:RCR:SZY:NX = 1:1:1:1) and recipe 7 (DH:RCR:SZY:NX = 7:5:3:1) partially reversed rotenone-induced death of TH-positive neurons in the SNpc and significantly increased rotenone-exposed days compared with model group. Pharmacologically, there was not a strong correlation between ECH concentration and TH-positive neurons.
CONCLUSIONThe investigated formulations of Chinese herbs had neuroprotective effects against PD models, and the neuroprotective effects were weakly related to the proportion of key herbs. However the neuroprotective effects of the formula may not result from a single active constituent.
Animals ; Disease Models, Animal ; Drugs, Chinese Herbal ; administration & dosage ; chemistry ; Humans ; Male ; Neuroprotective Agents ; administration & dosage ; chemistry ; Parkinson Disease ; drug therapy ; etiology ; Plants, Medicinal ; chemistry ; Rats ; Rats, Wistar ; Rotenone ; adverse effects
5.Neuroprotective effect of the ethanol extract of Artemisia capillaris on transient forebrain ischemia in mice via nicotinic cholinergic receptor.
Huiyoung KWON ; Ji Wook JUNG ; Young Choon LEE ; Jong Hoon RYU ; Dong Hyun KIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):428-435
Artemisia capillaris Thunberg is a medicinal plant used as a traditional medicine in many cultures. It is an effective remedy for liver problems including hepatitis. Recent pharmacological reports have indicated that Artemisia species can exert various neurological effects. Previously, we reported a memory-enhancing effect of Artemisia species. However, the mechanisms underlying the neuroprotective effect of A. capillaris (AC) are still unknown. In the present study, we investigated the effect of an ethanol extract of AC on ischemic brain injury in a mouse model of transient forebrain ischemia. The mice were treated with AC for seven days, beginning one day before induction of transient forebrain ischemia. Behavioral deficits were investigated using the Y-maze. Nissl and Fluoro-jade B staining were used to indicate the site of injury. To determine the underlying mechanisms for the drug, we measured acetylcholinesterase activity. AC (200 mg·kg) treatment reduced transient forebrain ischemia-induced neuronal cell death in the hippocampal CA1 region. The AC-treated group also showed significant amelioration in the spontaneous alternation of the Y-maze test performance, compared to that in the untreated transient forebrain ischemia group. Moreover, AC treatment showed a concentration-dependent inhibitory effect on acetylcholinesterase activity in vitro. Finally, the effect of AC on forebrain ischemia was blocked by mecamylamine, a nonselective nicotinic acetylcholine receptor antagonist. Our results suggested that in a model of forebrain ischemia, AC protected against neuronal death through the activation of nicotinic acetylcholine receptors.
Acetylcholinesterase
;
metabolism
;
Animals
;
Artemisia
;
Cell Death
;
drug effects
;
Cholinergic Antagonists
;
pharmacology
;
Disease Models, Animal
;
Ethanol
;
chemistry
;
Hippocampus
;
pathology
;
physiopathology
;
Ischemic Attack, Transient
;
drug therapy
;
pathology
;
physiopathology
;
Male
;
Mecamylamine
;
pharmacology
;
Memory
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Models, Neurological
;
Neuroprotective Agents
;
administration & dosage
;
pharmacology
;
Phytotherapy
;
Plant Components, Aerial
;
chemistry
;
Plant Extracts
;
administration & dosage
;
pharmacology
;
Receptors, Cholinergic
;
metabolism
6.Repeated Oral Administration of Human Serum Albumin Protects from the Cerebral Ischemia in Rat Brain Following MCAO.
Hyejin PARK ; Minyoung HONG ; Gil Ja JHON ; Youngmi LEE ; Minah SUH
Experimental Neurobiology 2017;26(3):151-157
Albumin is known to have neuroprotective effects. The protein has a long half-life circulation, and its effects can therefore persist for a long time to aid in the recovery of brain ischemia. In the present study, we investigated the neuroprotective effects of human serum albumin (HSA) on brain hemodynamics. Albumin is administrated using repeated oral gavage to the rodents. Sprague-Dawley rats underwent middle cerebral artery occlusion procedures and served as a stroke model. Afterwards, 25% human serum albumin (1.25 g/kg) or saline (5 ml/kg) was orally administrated for 2 weeks in alternating days. After 2 weeks, the rodents were assessed for levels of brain ischemia. Our testing battery consists of behavioral tests and in vivo optical imaging sessions. Modified neurological severity scores (mNSS) were obtained to assess the levels of ischemia and the effects of HSA oral administration. We found that the experimental group demonstrated larger hemodynamic responses following sensory stimulation than controls that were administered with saline. HSA administration resulted in more significant changes in cerebral blood volume following direct cortical electric stimulation. In addition, the mNSS of the treatment group was lower than the control group. In particular, brain tissue staining revealed that the infarct size was also much smaller with HSA administration. This study provides support for the efficacy of HSA, and that long-term oral administration of HSA may induce neuroprotective effects against brain ischemia.
Administration, Oral*
;
Animals
;
Anoxia
;
Behavior Rating Scale
;
Blood Volume
;
Brain Ischemia*
;
Brain*
;
Electric Stimulation
;
Half-Life
;
Hemodynamics
;
Humans*
;
Infarction, Middle Cerebral Artery
;
Ischemia
;
Neuroprotection
;
Neuroprotective Agents
;
Optical Imaging
;
Rats*
;
Rats, Sprague-Dawley
;
Rodentia
;
Serum Albumin*
;
Stroke
7.Neuroprotective effects of Yiqihuoxue calm wind capsule on ischemic stroke in rats.
Jun-Xia ZHANG ; Jiao-Mei GUO ; Hong-Jun LIN ; Ting-Ting ZHANG ; Zhen-Guo LI ; Ji-Chun ZHOU ; Zhen-Zhong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(10):758-765
Stroke remains the third leading cause of death and of adult disability worldwide. Vascular occlusion, followed by ischemic cascade, leads to irreversible tissue injury. Recombinant tissue plasminogen activator is the only FDA approved drug for the current treatment of acute ischemic stroke. However, traditional Chinese medicine has a long history and rich clinical experience in the treatment and rehabilitation of ischemic stroke. Using a classical middle cerebral artery occlusion (MCAO) stroke model, we tested the effectiveness of Yiqihuoxue calm wind (YCW) capsule on neurological function, gross pathology and oxidative stress status in MCAO rats. YCW capsule (3.36 and 6.72 g·kg of crude drug) could significantly lower Longa's score and superoxide dismutase (SOD) level, together with less necrotic cells and infarcted area. In addition to elevated MDA and downregulated iNOS expression, YCW capsule exhibited its neuroprotective effects via free radical scavenging and NO inhibition.
Animals
;
Brain Ischemia
;
drug therapy
;
genetics
;
metabolism
;
Humans
;
Male
;
Malondialdehyde
;
metabolism
;
Neuroprotective Agents
;
administration & dosage
;
Oxidative Stress
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Stroke
;
drug therapy
;
genetics
;
metabolism
;
Superoxide Dismutase
;
metabolism
8.Protective effect of Shouwu Yizhi decoction against vascular dementia by promoting angiogenesis.
Xiao-Ni YANG ; Chang-Sheng LI ; Chao CHEN ; Xiao-Yong TANG ; Guang-Qing CHENG ; Xia LI
Chinese Journal of Natural Medicines (English Ed.) 2017;15(10):740-750
Shouwu is a traditional Chinese medicine (TCM) with neuroprotective effect. Shouwu Yizhi decoction (SYD) was designed based on TCM theory. However, little is known about the roles of SYD in Vascular dementia (VaD). The present study aimed to evaluate the potential effects of SYD on the vascular cognitive impairment and explore the underlying mechanism by establishing focal cerebral ischemia/reperfusion (I/R) rat model to induce VaD. SYD administration (54 mg·kg) for 40 days obviously improved the vascular cognitive impairment in the middle cerebral artery occlusion (MCAO) rats as evidenced by the declined neurological deficit score and shortened escape latency via neurological deficit assessment and Morris water maze test. Moreover, SYD decreased neuron damage-induced cell death and ameliorated the ultrastructure of endothelial cells in the MCAO rats, thereby alleviating VaD. Mechanistically, SYD caused increases in the expression of vascular endothelial growth factor (VEGF), CD34 and CD31, compared with the MCAO rats in coronal hippocampus. Simultaneously, the expression level of miR-210 was elevated significantly after SYD administration, compared with the vehicle rats (P < 0.01). The expression of Notch 4 at both mRNA and protein levels was upregulated remarkably along with the notably downregulated DLL4 expression under SYD administration compared with the vehicle rats (P < 0.05). Overall, the above results indicated that SYD promoted angiogenesis by upregulating VEGF-induced miR210 expression to activate Notch pathway, and further alleviated neuron damage and ameliorated the ultrastructure of endothelial cells in the MCAO rats, ultimately enhancing the cognition and memory of MCAO rats. Therefore, our findings preliminarily identified the effect and the mechanism of action for SYD on VaD in rats. SYD could be a potential candidate in treatment of VaD.
Angiogenesis Inducing Agents
;
administration & dosage
;
Animals
;
Dementia, Vascular
;
drug therapy
;
genetics
;
metabolism
;
psychology
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
genetics
;
metabolism
;
Male
;
Membrane Proteins
;
genetics
;
metabolism
;
Memory
;
drug effects
;
Neuroprotective Agents
;
administration & dosage
;
Rats
;
Rats, Wistar
;
Receptor, Notch4
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism
9.Anti-oxidative and anti-inflammatory effects of cinnamaldehyde on protecting high glucose-induced damage in cultured dorsal root ganglion neurons of rats.
Dan YANG ; Xiao-Chun LIANG ; Yue SHI ; Qing SUN ; Di LIU ; Wei LIU ; Hong ZHANG
Chinese journal of integrative medicine 2016;22(1):19-27
OBJECTIVETo examine the mechanism underlying the beneficial role of cinnamaldehyde on oxidative damage and apoptosis in high glucose (HG)-induced dorsal root ganglion (DRG) neurons in vitro.
METHODSHG-treated DRG neurons were developed as an in vitro model of diabetic neuropathy. The neurons were randomly divided into five groups: the control group, the HG group and the HG groups treated with 25, 50 and 100 nmol/L cinnamaldehyde, respectively. Cell viability was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis rate was evaluated by the in situ TdT-mediated dUTP nick end labeling (TUNEL) assay. The intracellular level of reactive oxygen species (ROS) was measured with flow cytometry. Expression of nuclear factor-kappa B (NF-κB), inhibitor of κB (IκB), phosphorylated IκB (p-IκB), tumor necrosis factor (TNF)-α, interleukin-6 (IL-6) and caspase-3 were determined by western blotting and real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). Expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) were also measured by western blotting.
RESULTSCinnamaldehyde reduced HG-induced loss of viability, apoptosis and intracellular generation of ROS in the DRG neurons via inhibiting NF-κB activity. The western blot assay results showed that the HG-induced elevated expressions of NF-κB, IκB and p-IκB were remarkably reduced by cinnamaldehyde treatment in a dose-dependent manner (P <0.01). The HG-induced over-expression of NF-κB p65 mRNA was remarkably attenuated after cinnamaldehyde treatment in a dose-dependent manner (P <0.01). However, the expressions of Nrf2 and HO-1 were not upregulated. Treatment with cinnamaldehyde not only attenuated caspase-3 activation and the caspase cleavage cascade in DRG neurons, but also lowered the elevated IL-6, TNF-α, cyclo-oxygenase and inducible nitric oxide synthase levels, indicating a reduction in inflammatory damage.
CONCLUSIONSCinnamaldehyde protected DRG neurons from the deleterious effects of HG through inactivation of NF-κB pathway but not through activation of Nrf2/HO-1. And thus cinnamaldehyde may have potential application as a treatment for DPN.
Acrolein ; administration & dosage ; analogs & derivatives ; pharmacology ; Animals ; Anti-Inflammatory Agents ; pharmacology ; Apoptosis ; drug effects ; Blotting, Western ; Caspase 3 ; metabolism ; Cell Survival ; drug effects ; Cells, Cultured ; Ganglia, Spinal ; drug effects ; metabolism ; pathology ; Glucose ; toxicity ; Heme Oxygenase (Decyclizing) ; metabolism ; I-kappa B Proteins ; metabolism ; Interleukin-6 ; metabolism ; NF-E2-Related Factor 2 ; metabolism ; NF-kappa B ; metabolism ; Neurons ; drug effects ; metabolism ; pathology ; Neuroprotective Agents ; pharmacology ; Oxidation-Reduction ; drug effects ; Phosphorylation ; drug effects ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
10.Prolonged oral administration of Gastrodia elata extract improves spatial learning and memory of scopolamine-treated rats.
Young Mi PARK ; Bong Gun LEE ; Sang Hoon PARK ; Hong Geun OH ; Yang Gyu KANG ; Ok Jin KIM ; Lee Seong KWON ; Yong Phill KIM ; Min Hyu CHOI ; Yong Seob JEONG ; Jisun OH ; Hak Yong LEE
Laboratory Animal Research 2015;31(2):69-77
Gastrodia elata (GE) is traditionally used for treatment of various disorders including neurodegenerative diseases such as Alzheimer's disease. To investigate the neuroprotective effect of GE, amyloid-beta peptide (Abeta)-treated PC12 cells were cultured with GE aqueous extract. In vitro assay demonstrated that 50 microM of pre-aggregated Abeta was lethal to about a half portion of PC12 cells and that Abeta aggregate-induced cell death was significantly decreased with GE treatment at < or =10 mg/mL in a dose-dependent manner. To further examine in vivo cognitive-improving effects, an artificial amnesic animal model, scopolamine-injected Sprague-Dawley rats, were orally administered the extract for 6 weeks followed by behavioral tests (the passive avoidance test and Morris water maze test). The results showed that an acute treatment with scopolamine (1 mg/kg of body weight) effectively induced memory impairment in normal rats and that the learning and memory capability of scopolamine-treated rats improved after prolonged administration of GE extract (50, 250 and 500 mg/kg of body weight for 6 weeks). These findings suggest that a GE regimen may potentially ameliorate learning and memory deficits and/or cognitive impairments caused by neuronal cell death.
Administration, Oral*
;
Alzheimer Disease
;
Animals
;
Body Weight
;
Cell Death
;
Gastrodia*
;
Learning*
;
Memory Disorders
;
Memory*
;
Models, Animal
;
Neurodegenerative Diseases
;
Neurons
;
Neuroprotective Agents
;
PC12 Cells
;
Rats*
;
Rats, Sprague-Dawley
;
Scopolamine Hydrobromide

Result Analysis
Print
Save
E-mail