1.Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis.
Journal of Zhejiang University. Medical sciences 2020;49(1):90-99
Neurons are the structural and functional unit of the nervous system. Precisely regulated dendrite morphogenesis is the basis of neural circuit assembly. Numerous studies have been conducted to explore the regulatory mechanisms of dendritic morphogenesis. According to their action regions, we divide them into two categories: the intrinsic and extrinsic regulators of neuronal dendritic morphogenesis. Intrinsic factors are cell type-specific transcription factors, actin polymerization or depolymerization regulators and regulators of the secretion or endocytic pathways. These intrinsic factors are produced by neuron itself and play an important role in regulating the development of dendrites. The extrinsic regulators are either secreted proteins or transmembrane domain containing cell adhesion molecules. They often form receptor-ligand pairs to mediate attractive or repulsive dendritic guidance. In this review, we summarize recent findings on the intrinsic and external molecular mechanisms of dendrite morphogenesis from multiple model organisms, including , and mice. These studies will provide a better understanding on how defective dendrite development and maintenance are associated with neurological diseases.
Animals
;
Caenorhabditis elegans
;
cytology
;
Dendrites
;
Mice
;
Morphogenesis
;
Nervous System Diseases
;
physiopathology
;
Neurons
;
cytology
;
Transcription Factors
;
metabolism
2.Activation of PPARγ pathway enhances cellular anti-oxidant capacity to protect long-term cultured primary rat neural cells from apoptosis.
Huqing WANG ; Jiaxin FAN ; Wanying CHEN ; Zhen GAO ; Guilian ZHANG ; Haiqin WU ; Xiaorui YU
Journal of Southern Medical University 2019;39(1):23-29
OBJECTIVE:
To study the protective effect of enhanced peroxisome proliferator activated receptor γ (PPARγ) pathway against apoptosis of long-term cultured primary nerve cells.
METHODS:
A natural aging model was established in primary rat nerve cells by long-term culture for 22 days. The cells were divided into control group, 0.1, 1.0, 5.0, and 10 μmol/L GW9662 intervention groups, and 0.1, 1.0, 5.0, and 10 μmol/L pioglitazone intervention groups. The cell viability was assessed using MTT assay and the cell morphological changes were observed after the treatments to determine the optimal concentrations of GW9662 and pioglitazone. Double immunofluorescence labeling and flow cytometry were used to observe the changes in the number of viable cells and cell apoptosis following the treatments; immunocytochemical staining was used to assess the changes in the anti-oxidation ability of the treated cells.
RESULTS:
The optimal concentrations of GW9662 and pioglitazone determined based on the cell viability and morphological changes were both 1 μmol/L. Compared with the control group, GW9662 treatment significantly lowered while pioglitazone significantly increased the total cell number and nerve cell counts ( < 0.05), and nerve cells in the cell cultures maintained a constant ratio at about 80% in all the groups ( > 0.05). GW9662 significantly enhanced while pioglitazone significantly lowered the cell apoptosis rates compared with the control group ( < 0.05). GW9662 obviously lowered SOD activity and GSH content in G group ( < 0.05) and increased MDA content in the cells ( < 0.05), and pioglitazone resulted in reverse changes in SOD, GSH and MDA contents in the cells ( < 0.05).
CONCLUSIONS
Activation of PPARγ pathway protects long-term cultured primary nerve cells by enhancing cellular anti-oxidant capacity and reducing cell apoptosis, suggesting a potential strategy for anti-aging treatment of the nervous system through intervention of the PPARγ pathway.
Anilides
;
administration & dosage
;
pharmacology
;
Animals
;
Apoptosis
;
Cell Proliferation
;
Cell Survival
;
Cells, Cultured
;
Cellular Senescence
;
physiology
;
Neurons
;
cytology
;
PPAR gamma
;
metabolism
;
Pioglitazone
;
administration & dosage
;
pharmacology
;
Rats
3.mA Regulates Neurogenesis and Neuronal Development by Modulating Histone Methyltransferase Ezh2.
Junchen CHEN ; Yi-Chang ZHANG ; Chunmin HUANG ; Hui SHEN ; Baofa SUN ; Xuejun CHENG ; Yu-Jie ZHANG ; Yun-Gui YANG ; Qiang SHU ; Ying YANG ; Xuekun LI
Genomics, Proteomics & Bioinformatics 2019;17(2):154-168
N-methyladenosine (mA), catalyzed by the methyltransferase complex consisting of Mettl3 and Mettl14, is the most abundant RNA modification in mRNAs and participates in diverse biological processes. However, the roles and precise mechanisms of mA modification in regulating neuronal development and adult neurogenesis remain unclear. Here, we examined the function of Mettl3, the key component of the complex, in neuronal development and adult neurogenesis of mice. We found that the depletion of Mettl3 significantly reduced mA levels in adult neural stem cells (aNSCs) and inhibited the proliferation of aNSCs. Mettl3 depletion not only inhibited neuronal development and skewed the differentiation of aNSCs more toward glial lineage, but also affected the morphological maturation of newborn neurons in the adult brain. mA immunoprecipitation combined with deep sequencing (MeRIP-seq) revealed that mA was predominantly enriched in transcripts related to neurogenesis and neuronal development. Mechanistically, mA was present on the transcripts of histone methyltransferase Ezh2, and its reduction upon Mettl3 knockdown decreased both Ezh2 protein expression and consequent H3K27me3 levels. The defects of neurogenesis and neuronal development induced by Mettl3 depletion could be rescued by Ezh2 overexpression. Collectively, our results uncover a crosstalk between RNA and histone modifications and indicate that Mettl3-mediated mA modification plays an important role in regulating neurogenesis and neuronal development through modulating Ezh2.
Adenosine
;
analogs & derivatives
;
metabolism
;
Adult Stem Cells
;
cytology
;
metabolism
;
Animals
;
Brain
;
metabolism
;
Cell Differentiation
;
genetics
;
Cell Proliferation
;
Enhancer of Zeste Homolog 2 Protein
;
metabolism
;
Gene Expression Regulation
;
Methyltransferases
;
metabolism
;
Mice, Inbred C57BL
;
Neural Stem Cells
;
cytology
;
metabolism
;
Neurogenesis
;
genetics
;
Neurons
;
cytology
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
4.JNK/c-Jun signaling pathway mediates arginine vasopressin neuron regeneration by promoting cytoskeleton reconstruction in rats with electrical lesions of the pituitary stalk.
Kai LI ; Zhanpeng FENG ; Yichao OU ; Mingfeng ZHOU ; Junjie PENG ; Haodong GONG ; Guangsen WU ; Yawei LIU ; Songtao QI
Journal of Southern Medical University 2019;39(9):1099-1106
OBJECTIVE:
To investigate the mechanism by which doublecortin promotes the recovery of cytoskeleton in arginine vasopressin (AVP) neurons in rats with electrical lesions of the pituitary stalk (PEL).
METHODS:
Thirty-two SD rats were randomized into PEL group with electrical lesions of the pituitary stalk through the floor of the skull base (=25) and sham operation group (=7), and the daily water consumption (DWC), daily urine volume (DUV) and urine specific gravity (USG) of the rats were recorded. Four rats on day 1 and 7 rats on each of days 3, 7 and 14 after PEL as well as the sham-operated rats were sacrificed for detection of the expressions of β-Tubulin (Tuj1), doublecortin and caspase- 3 in the AVP neurons of the supraoptic nucleus using immunofluorescence assay and Western blotting.
RESULTS:
After PEL, the rats exhibited a typical triphasic pattern of diabetes insipidus, with the postoperative days 1-2 as the phase one, days 3-5 as the phase two, and days 6-14 as the phase three. Immunofluorescent results indicated the repair of the AVP neurons evidenced by significantly increased doublecortin expressions in the AVP neurons following PEL; similarly, the expression of Tuj1 also increased progressively after PEL, reaching the peak level on day 7 after PEL. The apoptotic rates of the AVP neurons exhibited a reverse pattern of variation, peaking on postoperative day 3 followed by progressive reduction till day 14. Western blotting showed that the expressions of c-Jun and p-c-Jun were up-regulated significantly on day 3 ( < 0.05) and 7 ( < 0.01) after PEL, while an upregulated p-JNK expression was detected only on day 3 ( < 0.05), as was consistent with the time-courses of neuronal recovery and apoptosis after PEL.
CONCLUSIONS
JNK/c-Jun pathway is activated after PEL to induce apoptosis of AVP neurons in the acute phase and to promote the repair of neuronal cytoskeleton by up-regulation of doublecortin and Tuj1 expressions.
Animals
;
Apoptosis
;
Arginine Vasopressin
;
pharmacology
;
Cytoskeleton
;
metabolism
;
MAP Kinase Signaling System
;
Neurons
;
cytology
;
Pituitary Gland
;
cytology
;
injuries
;
Proto-Oncogene Proteins c-jun
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Regeneration
;
Tubulin
;
metabolism
5.Rapid and Sparse Labeling of Neurons Based on the Mutant Virus-Like Particle of Semliki Forest Virus.
Fan JIA ; Xutao ZHU ; Pei LV ; Liang HU ; Qing LIU ; Sen JIN ; Fuqiang XU
Neuroscience Bulletin 2019;35(3):378-388
Sparse labeling of neurons contributes to uncovering their morphology, and rapid expression of a fluorescent protein reduces the experiment range. To achieve the goal of rapid and sparse labeling of neurons in vivo, we established a rapid method for depicting the fine structure of neurons at 24 h post-infection based on a mutant virus-like particle of Semliki Forest virus. Approximately 0.014 fluorescent focus-forming units of the mutant virus-like particle transferred enhanced green fluorescent protein into neurons in vivo, and its affinity for neurons in vivo was stronger than for neurons in vitro and BHK21 (baby hamster kidney) cells. Collectively, the mutant virus-like particle provides a robust and convenient way to reveal the fine structure of neurons and is expected to be a helper virus for combining with other tools to determine their connectivity. Our work adds a new tool to the approaches for rapid and sparse labeling of neurons in vivo.
Animals
;
Cells, Cultured
;
Gene Expression
;
Genetic Vectors
;
genetics
;
metabolism
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Immunohistochemistry
;
methods
;
Male
;
Mice, Inbred C57BL
;
Microscopy, Fluorescence
;
methods
;
Neurons
;
cytology
;
metabolism
;
Purkinje Cells
;
cytology
;
metabolism
;
Semliki forest virus
;
genetics
6.G protein-coupled estrogen receptor alleviates cerebral ischemia-reperfusion injury through inhibiting endoplasmic reticulum stress.
Zi-Wei HAN ; Li-Cang ZHU ; Yue-Chen CHANG ; Ying ZHOU ; Jia-An ZONG ; Ke-Tao MA ; Jun-Qiang SI ; Li LI
Acta Physiologica Sinica 2019;71(4):527-536
The aim of this study was to investigate whether G protein-coupled estrogen receptor (GPER) could alleviate hippocampal neuron injury under cerebral ischemia-reperfusion injury (CIRI) by acting on endoplasmic reticulum stress (ERS). The CIRI animal model was established by middle cerebral artery occlusion (MCAO). Female ovariectomized (OVX) Sprague-Dawley (SD) female rats were randomly divided into 4 groups: control, ischemia-reperfusion injury (MCAO), vehicle (MCAO+DMSO), and GPER-specific agonist G1 (MCAO+G1) groups. The neurobehavioral score was assessed by the Longa score method, the morphological changes of the neurons were observed by the Nissl staining, the cerebral infarction was detected by the TTC staining, and the neural apoptosis in the hippocampal CA1 region was detected by TUNEL staining. The distribution and expression of GRP78 (78 kDa glucose-regulated protein 78) in the hippocampal CA1 region were observed by immunofluorescent staining. The protein expression levels of GRP78, Caspase-12, CHOP and Caspase-3 were detected by Western blot, and the mRNA expression levels of GRP78, Caspase-12, and CHOP were detected by the real-time PCR. The results showed that the neurobehavioral score, cerebral infarct volume, cellular apoptosis index, as well as GRP78, Caspase-12 and CHOP protein and mRNA expression levels in the MCAO group were significantly higher than those of control group. And G1 reversed the above-mentioned changes in the MCAO+G1 group. These results suggest that the activation of GPER can decrease the apoptosis of hippocampal neurons and relieve CIRI, and its mechanism may involve the inhibition of ERS.
Animals
;
Apoptosis
;
Brain Ischemia
;
CA1 Region, Hippocampal
;
cytology
;
Caspase 12
;
metabolism
;
Caspase 3
;
metabolism
;
Endoplasmic Reticulum Stress
;
Female
;
Heat-Shock Proteins
;
metabolism
;
Neurons
;
cytology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Estrogen
;
physiology
;
Receptors, G-Protein-Coupled
;
agonists
;
Reperfusion Injury
;
Transcription Factor CHOP
;
metabolism
7.Hierarchical Control of Drosophila Sleep, Courtship, and Feeding Behaviors by Male-Specific P1 Neurons.
Wenxuan ZHANG ; Chao GUO ; Dandan CHEN ; Qionglin PENG ; Yufeng PAN
Neuroscience Bulletin 2018;34(6):1105-1110
Animals choose among sleep, courtship, and feeding behaviors based on the integration of both external sensory cues and internal states; such choices are essential for survival and reproduction. These competing behaviors are closely related and controlled by distinct neural circuits, but whether they are also regulated by shared neural nodes is unclear. Here, we investigated how a set of male-specific P1 neurons controls sleep, courtship, and feeding behaviors in Drosophila males. We found that mild activation of P1 neurons was sufficient to affect sleep, but not courtship or feeding, while stronger activation of P1 neurons labeled by four out of five independent drivers induced courtship, but only the driver that targeted the largest number of P1 neurons affected feeding. These results reveal a common neural node that affects sleep, courtship, and feeding in a threshold-dependent manner, and provide insights into how competing behaviors can be regulated by a shared neural node.
Animals
;
Animals, Genetically Modified
;
Brain
;
cytology
;
Courtship
;
Drosophila
;
Drosophila Proteins
;
genetics
;
metabolism
;
Feeding Behavior
;
physiology
;
Locomotion
;
Male
;
Neural Inhibition
;
physiology
;
Neural Pathways
;
physiology
;
Neurons
;
physiology
;
Sex Factors
;
Sleep
;
physiology
8.Histamine Excites Rat GABAergic Ventral Pallidum Neurons via Co-activation of H1 and H2 Receptors.
Miao-Jin JI ; Xiao-Yang ZHANG ; Xiao-Chun PENG ; Yang-Xun ZHANG ; Zi CHEN ; Lei YU ; Jian-Jun WANG ; Jing-Ning ZHU
Neuroscience Bulletin 2018;34(6):1029-1036
The ventral pallidum (VP) is a crucial component of the limbic loop of the basal ganglia and participates in the regulation of reward, motivation, and emotion. Although the VP receives afferent inputs from the central histaminergic system, little is known about the effect of histamine on the VP and the underlying receptor mechanism. Here, we showed that histamine, a hypothalamic-derived neuromodulator, directly depolarized and excited the GABAergic VP neurons which comprise a major cell type in the VP and are responsible for encoding cues of incentive salience and reward hedonics. Both postsynaptic histamine H1 and H2 receptors were found to be expressed in the GABAergic VP neurons and co-mediate the excitatory effect of histamine. These results suggested that the central histaminergic system may actively participate in VP-mediated motivational and emotional behaviors via direct modulation of the GABAergic VP neurons. Our findings also have implications for the role of histamine and the central histaminergic system in psychiatric disorders.
Action Potentials
;
drug effects
;
Animals
;
Basal Forebrain
;
cytology
;
Dimaprit
;
pharmacology
;
Dose-Response Relationship, Drug
;
Electric Stimulation
;
Female
;
GABAergic Neurons
;
drug effects
;
Histamine
;
pharmacology
;
Histamine Agonists
;
pharmacology
;
Lysine
;
analogs & derivatives
;
metabolism
;
Male
;
Patch-Clamp Techniques
;
Pyridines
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Histamine H1
;
metabolism
;
Receptors, Histamine H2
;
metabolism
;
Sodium Channel Blockers
;
pharmacology
;
Tetrodotoxin
;
pharmacology
;
gamma-Aminobutyric Acid
;
metabolism
9.Taurine Transporter dEAAT2 is Required for Auditory Transduction in Drosophila.
Ying SUN ; Yanyan JIA ; Yifeng GUO ; Fangyi CHEN ; Zhiqiang YAN
Neuroscience Bulletin 2018;34(6):939-950
Drosophila dEAAT2, a member of the excitatory amino-acid transporter (EAAT) family, has been described as mediating the high-affinity transport of taurine, which is a free amino-acid abundant in both insects and mammals. However, the role of taurine and its transporter in hearing is not clear. Here, we report that dEAAT2 is required for the larval startle response to sound stimuli. dEAAT2 was found to be enriched in the distal region of chordotonal neurons where sound transduction occurs. The Ca imaging and electrophysiological results showed that disrupted dEAAT2 expression significantly reduced the response of chordotonal neurons to sound. More importantly, expressing dEAAT2 in the chordotonal neurons rescued these mutant phenotypes. Taken together, these findings indicate a critical role for Drosophila dEAAT2 in sound transduction by chordotonal neurons.
Acoustic Stimulation
;
Action Potentials
;
genetics
;
Animals
;
Animals, Genetically Modified
;
Auditory Pathways
;
physiology
;
Calcium
;
metabolism
;
Drosophila
;
genetics
;
Drosophila Proteins
;
genetics
;
metabolism
;
Excitatory Amino Acid Transporter 2
;
genetics
;
metabolism
;
Hearing
;
genetics
;
Larva
;
Luminescent Proteins
;
genetics
;
metabolism
;
Mutation
;
genetics
;
Nervous System
;
cytology
;
Neurons
;
metabolism
10.Repeated Failure in Reward Pursuit Alters Innate Drosophila Larval Behaviors.
Yue FEI ; Dikai ZHU ; Yixuan SUN ; Caixia GONG ; Shenyang HUANG ; Zhefeng GONG
Neuroscience Bulletin 2018;34(6):901-911
Animals always seek rewards and the related neural basis has been well studied. However, what happens when animals fail to get a reward is largely unknown, although this is commonly seen in behaviors such as predation. Here, we set up a behavioral model of repeated failure in reward pursuit (RFRP) in Drosophila larvae. In this model, the larvae were repeatedly prevented from reaching attractants such as yeast and butyl acetate, before finally abandoning further attempts. After giving up, they usually showed a decreased locomotor speed and impaired performance in light avoidance and sugar preference, which were named as phenotypes of RFRP states. In larvae that had developed RFRP phenotypes, the octopamine concentration was greatly elevated, while tβh mutants devoid of octopamine were less likely to develop RFRP phenotypes, and octopamine feeding efficiently restored such defects. By down-regulating tβh in different groups of neurons and imaging neuronal activity, neurons that regulated the development of RFRP states and the behavioral exhibition of RFRP phenotypes were mapped to a small subgroup of non-glutamatergic and glutamatergic octopaminergic neurons in the central larval brain. Our results establish a model for investigating the effect of depriving an expected reward in Drosophila and provide a simplified framework for the associated neural basis.
Acetates
;
pharmacology
;
Animals
;
Animals, Genetically Modified
;
Avoidance Learning
;
physiology
;
Biogenic Amines
;
metabolism
;
Conditioning, Operant
;
physiology
;
Drosophila
;
physiology
;
Drosophila Proteins
;
genetics
;
metabolism
;
Feeding Behavior
;
drug effects
;
physiology
;
Instinct
;
Larva
;
physiology
;
Locomotion
;
drug effects
;
genetics
;
Nervous System
;
cytology
;
Neurons
;
physiology
;
Octopamine
;
metabolism
;
RNA Interference
;
physiology
;
Reward
;
Statistics, Nonparametric
;
Transcription Factors
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail