1.Research progress on the epigenetic mechanisms of inverse relationship between Alzheimer's disease and cancer onset.
Wen-Zhen XIA ; Hai-Peng LI ; Shun-Jiang XU
Acta Physiologica Sinica 2020;72(4):506-512
		                        		
		                        			
		                        			Alzheimer's disease (AD) is currently the most prevalent neurodegenerative disease in the aging population. It is characterized by massive deposition of extracellular β-amyloid peptide and formation of intracellular neurofibrillary tangles. Cancer is also an age-related disease. Some epidemiological studies have shown an inverse relationship between AD and the onset of various types of cancers, that is, the risk of cancer in patients with AD is reduced, and vice versa. Epigenetic mechanisms play important roles in the development of AD and cancer. In this article, we will review the recent research advances on the epigenetic mechanisms of AD and cancer onset, and provide new ideas for rethinking the relevance of AD and cancer with a "holistic concept".
		                        		
		                        		
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Alzheimer Disease
		                        			;
		                        		
		                        			Epigenesis, Genetic
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			Neurodegenerative Diseases
		                        			;
		                        		
		                        			Neurofibrillary Tangles
		                        			
		                        		
		                        	
2.Primary age-related tauopathy in a Chinese cohort.
Xin WANG ; Lei ZHANG ; Hui LU ; Juan-Li WU ; Hua-Zheng LIANG ; Chong LIU ; Qing-Qing TAO ; Zhi-Ying WU ; Ke-Qing ZHU
Journal of Zhejiang University. Science. B 2020;21(3):256-262
		                        		
		                        			
		                        			Primary age-related tauopathy (PART) is characterized by the presence of tau neurofibrillary tangles (NFTs) which are typically observed in Alzheimer's disease (AD) brains, with few or without β-amyloid (Aβ) plaques. The diagnosis of PART can be categorized into "definite" or "possible" depending on the amount of Aβ plaques. Definite PART is diagnosed when NFTs are observed and the Braak stage is ≤IV, with Thal Aβ Phase 0 (Crary et al., 2014). According to the neuropathological diagnostic criteria, we reported that PART was frequently observed in the Chinese population according to our findings from specimens in our brain bank, with 47% of brain bank subjects meeting the criteria for PART. There is no consensus on the nature of PART. It remains to be elucidated whether PART is an early form of AD or a novel tauopathy (Duyckaerts et al., 2015; Jellinger et al., 2015).
		                        		
		                        		
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Aged, 80 and over
		                        			;
		                        		
		                        			Aging/pathology*
		                        			;
		                        		
		                        			Alzheimer Disease/pathology*
		                        			;
		                        		
		                        			Brain/pathology*
		                        			;
		                        		
		                        			Cohort Studies
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Neurofibrillary Tangles/pathology*
		                        			;
		                        		
		                        			Tauopathies/pathology*
		                        			
		                        		
		                        	
3.pathological model of Alzheimer's disease based on neuronal network chip and its real-time dynamic analysis.
Fan GAO ; Keqiang GAO ; Chuanjiang HE ; Mengxue LIU ; Yanjie HU ; Kejing YING ; Hao WAN ; Ping WANG
Journal of Biomedical Engineering 2019;36(6):893-901
		                        		
		                        			
		                        			Alzheimer's disease (AD) is a chronic central neurodegenerative disease. The pathological features of AD are the extracellular deposition of senile plaques formed by amyloid-β oligomers (AβOs) and the intracellular accumulation of neurofibrillary tangles formed by hyperphosphorylated tau protein. In this paper, an in vitro pathological model of AD based on neuronal network chip and its real-time dynamic analysis were presented. The hippocampal neuronal network was cultured on the microelectrode array (MEA) chip and induced by AβOs as an AD model to simultaneously record two firing patterns from the interneurons and pyramidal neurons. The spatial firing patterns mapping and cross-correlation between channels were performed to validate the degeneration of neuronal network connectivity. This biosensor enabled the detection of the AβOs toxicity responses, and the identification of connectivity and interactions between neuronal networks, which can be a novel technique in the research of AD pathological model .
		                        		
		                        		
		                        		
		                        			Alzheimer Disease
		                        			;
		                        		
		                        			Amyloid beta-Peptides
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neurofibrillary Tangles
		                        			;
		                        		
		                        			tau Proteins
		                        			
		                        		
		                        	
4.Phosphorylated TDP-43 Staging of Primary Age-Related Tauopathy.
Xiaoling ZHANG ; Bing SUN ; Xing WANG ; Hui LU ; Fangjie SHAO ; Annemieke J M ROZEMULLER ; Huazheng LIANG ; Chong LIU ; Jiadong CHEN ; Manli HUANG ; Keqing ZHU
Neuroscience Bulletin 2019;35(2):183-192
		                        		
		                        			
		                        			Primary age-related tauopathy (PART) is characterized by tau neurofibrillary tangles (NFTs) in the absence of amyloid plaque pathology. In the present study, we analyzed the distribution patterns of phosphorylated 43-kDa TAR DNA-binding protein (pTDP-43) in the brains of patients with PART. Immunohistochemistry and immunofluorescence double-labeling in multiple brain regions was performed on brain tissues from PART, Alzheimer's disease (AD), and aging control cases. We examined the regional distribution patterns of pTDP-43 intraneuronal inclusions in PART with Braak NFT stages > 0 and ≤ IV, and a Thal phase of 0 (no beta-amyloid present). We found four stages which indicated potentially sequential dissemination of pTDP-43 in PART. Stage I was characterized by the presence of pTDP-43 lesions in the amygdala, stage II by such lesions in the hippocampus, stage III by spread of pTDP-43 to the neocortex, and stage IV by pTDP-43 lesions in the putamen, pallidum, and insular cortex. In general, the distribution pattern of pTDP-43 pathology in PART cases was similar to the early TDP-43 stages reported in AD, but tended to be more restricted to the limbic system. However, there were some differences in the distribution patterns of pTDP-43 between PART and AD, especially in the dentate gyrus of the hippocampus. Positive correlations were found in PART between the Braak NFT stage and the pTDP-43 stage and density.
		                        		
		                        		
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Aged, 80 and over
		                        			;
		                        		
		                        			Aging
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			DNA-Binding Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Disease Progression
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunohistochemistry
		                        			;
		                        		
		                        			Inclusion Bodies
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Neurofibrillary Tangles
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Severity of Illness Index
		                        			;
		                        		
		                        			Tauopathies
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
5.Gait Ignition Failure in JNPL3 Human Tau-mutant Mice
HoChung JANG ; Jung Hwa RYU ; Kyung Min SHIN ; Na Young SEO ; Gyu Hyun KIM ; Yang Hoon HUH ; Ae Nim PAE ; Kea Joo LEE
Experimental Neurobiology 2019;28(3):404-413
		                        		
		                        			
		                        			Cognitive impairments and motor dysfunction are commonly observed behavioral phenotypes in genetic animal models of neurodegenerative diseases. JNPL3 transgenic mice expressing human P301L-mutant tau display motor disturbances with age- and gene dose-dependent development of neurofibrillary tangles, suggesting that tau pathology causes neurodegeneration associated with motor behavioral abnormalities. Although gait ignition failure (GIF), a syndrome marked by difficulty in initiating locomotion, has been described in patients with certain forms of tauopathies, transgenic mouse models mirroring human GIF syndrome have yet to be reported. Using the open field and balance beam tests, here we discovered that JNPL3 homozygous mice exhibit a marked delay of movement initiation. The elevated plus maze excluded the possibility that hesitation to start in JNPL3 mice was caused by enhanced levels of anxiety. Considering the normal gait ignition in rTg4510 mice expressing the same mutant tau in the forebrain, GIF in JNPL3 mice seems to arise from abnormal tau deposition in the hindbrain areas involved in locomotor initiation. Accordingly, immunohistochemistry revealed highly phosphorylated paired helical filament tau in JNPL3 brainstem areas associated with gait initiation. Together, these findings demonstrate a novel behavioral phenotype of impaired gait initiation in JNPL3 mice and underscore the value of this mouse line as a tool to study the neural mechanisms and potential treatments for human GIF syndrome.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anxiety
		                        			;
		                        		
		                        			Brain Stem
		                        			;
		                        		
		                        			Cognition Disorders
		                        			;
		                        		
		                        			Gait
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunohistochemistry
		                        			;
		                        		
		                        			Locomotion
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Transgenic
		                        			;
		                        		
		                        			Models, Animal
		                        			;
		                        		
		                        			Neurodegenerative Diseases
		                        			;
		                        		
		                        			Neurofibrillary Tangles
		                        			;
		                        		
		                        			Pathology
		                        			;
		                        		
		                        			Phenotype
		                        			;
		                        		
		                        			Prosencephalon
		                        			;
		                        		
		                        			Rhombencephalon
		                        			;
		                        		
		                        			Tauopathies
		                        			
		                        		
		                        	
6.Relationships between ¹⁸F-THK5351 Retention and Language Functions in Primary Progressive Aphasia
Hye Jin JEONG ; Cindy W YOON ; Seongho SEO ; Sang Yoon LEE ; Mee Kyung SUH ; Ha Eun SEO ; Woo Ram KIM ; Hyon LEE ; Jae Hyeok HEO ; Yeong Bae LEE ; Kee Hyung PARK ; Seong Hye CHOI ; Tatsuo IDO ; Kyoung Min LEE ; Young NOH
Journal of Clinical Neurology 2019;15(4):527-536
		                        		
		                        			
		                        			BACKGROUND AND PURPOSE: There are three distinct subtypes of primary progressive aphasia (PPA): the nonfluent/agrammatic variant (nfvPPA), the semantic variant (svPPA), and the logopenic variant (lvPPA). We sought to characterize the pattern of [¹⁸F]-THK5351 retention across all three subtypes and determine the topography of [¹⁸F]-THK5351 retention correlated with each neurolinguistic score. METHODS: We enrolled 50 participants, comprising 13 PPA patients (3 nfvPPA, 5 svPPA, and 5 lvPPA) and 37 subjects with normal cognition (NC) who underwent 3.0-tesla magnetic resonance imaging, [¹⁸F]-THK5351 positron-emission tomography scans, and detailed neuropsychological tests. The PPA patients additionally participated in extensive neurolinguistic tests. Voxel-wise and region-of-interest-based analyses were performed to analyze [¹⁸F]-THK5351 retention. RESULTS: The nfvPPA patients exhibited higher [¹⁸F]-THK5351 retention in the the left inferior frontal and precentral gyri. In svPPA patients, [¹⁸F]-THK5351 retention was elevated in the anteroinferior and lateral temporal cortices compared to the NC group (left>right). The lvPPA patients exhibited predominant [¹⁸F]-THK5351 retention in the inferior parietal, lateral temporal, and dorsolateral prefrontal cortices, and the precuneus (left>right). [¹⁸F]-THK5351 retention in the left inferior frontal area was associated with lower fluency scores. Comprehension was correlated with [¹⁸F]-THK5351 retention in the left temporal cortices. Repetition was associated with [¹⁸F]-THK5351 retention in the left inferior parietal and posterior temporal areas, while naming difficulty was correlated with retention in the left fusiform and temporal cortices. CONCLUSIONS: The pattern of [¹⁸F]-THK5351 retention was well matched with clinical and radiological findings for each PPA subtype, in agreement with the anatomical and functional location of each language domain.
		                        		
		                        		
		                        		
		                        			Aphasia, Primary Progressive
		                        			;
		                        		
		                        			Cognition
		                        			;
		                        		
		                        			Comprehension
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Magnetic Resonance Imaging
		                        			;
		                        		
		                        			Neurofibrillary Tangles
		                        			;
		                        		
		                        			Neuropsychological Tests
		                        			;
		                        		
		                        			Parietal Lobe
		                        			;
		                        		
		                        			Positron-Emission Tomography
		                        			;
		                        		
		                        			Prefrontal Cortex
		                        			;
		                        		
		                        			Rabeprazole
		                        			;
		                        		
		                        			Semantics
		                        			;
		                        		
		                        			Temporal Lobe
		                        			
		                        		
		                        	
7.In vitro pathological model of Alzheimer's disease based on neuronal network chip and its real-time dynamic analysis.
Fan GAO ; Keqiang GAO ; Chuanjiang HE ; Mengxue LIU ; Yanjie HU ; Kejing YING ; Hao WAN ; Ping WANG
Journal of Biomedical Engineering 2019;36(6):893-901
		                        		
		                        			
		                        			Alzheimer's disease (AD) is a chronic central neurodegenerative disease. The pathological features of AD are the extracellular deposition of senile plaques formed by amyloid-β oligomers (AβOs) and the intracellular accumulation of neurofibrillary tangles formed by hyperphosphorylated tau protein. In this paper, an in vitro pathological model of AD based on neuronal network chip and its real-time dynamic analysis were presented. The hippocampal neuronal network was cultured on the microelectrode array (MEA) chip and induced by AβOs as an AD model in vitro to simultaneously record two firing patterns from the interneurons and pyramidal neurons. The spatial firing patterns mapping and cross-correlation between channels were performed to validate the degeneration of neuronal network connectivity. This biosensor enabled the detection of the AβOs toxicity responses, and the identification of connectivity and interactions between neuronal networks, which can be a novel technique in the research of AD pathological model in vitro.
		                        		
		                        		
		                        		
		                        			Alzheimer Disease
		                        			;
		                        		
		                        			Amyloid beta-Peptides
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neurofibrillary Tangles
		                        			;
		                        		
		                        			tau Proteins
		                        			
		                        		
		                        	
8.Primary Age-Related Tauopathy: An Elderly Brain Pathology Frequently Encountered during Autopsy
Daru KIM ; Hyung Seok KIM ; Seong Min CHOI ; Byeong C KIM ; Min Cheol LEE ; Kyung Hwa LEE ; Jae Hyuk LEE
Journal of Pathology and Translational Medicine 2019;53(3):159-163
		                        		
		                        			
		                        			Due to the progressive aging of Korean society and the introduction of brain banks to the Korean medical system, the possibility that pathologists will have access to healthy elderly brains has increased. The histopathological analysis of an elderly brain from a subject with relatively well-preserved cognition is quite different from that of a brain from a demented subject. Additionally, the histology of elderly brains differs from that of young brains. This brief review discusses primary age-related tauopathy; this term was coined to describe elderly brains with Alzheimer’s diseasetype neurofibrillary tangles mainly confined to medial temporal structures, and no β-amyloid pathology.
		                        		
		                        		
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Aging
		                        			;
		                        		
		                        			Amyloid beta-Peptides
		                        			;
		                        		
		                        			Autopsy
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			Cognition
		                        			;
		                        		
		                        			Dementia
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neurofibrillary Tangles
		                        			;
		                        		
		                        			Numismatics
		                        			;
		                        		
		                        			Pathology
		                        			;
		                        		
		                        			Tauopathies
		                        			
		                        		
		                        	
9.Targeted Downregulation of kdm4a Ameliorates Tau-engendered Defects in Drosophila melanogaster
Sung Yeon PARK ; Jieun SEO ; Yang Sook CHUN
Journal of Korean Medical Science 2019;34(33):e225-
		                        		
		                        			
		                        			BACKGROUND: Tauopathies, a class of neurodegenerative diseases that includes Alzheimer's disease (AD), are characterized by the deposition of neurofibrillary tangles composed of hyperphosphorylated tau protein in the human brain. As abnormal alterations in histone acetylation and methylation show a cause and effect relationship with AD, we investigated the role of several Jumonji domain-containing histone demethylase (JHDM) genes, which have yet to be studied in AD pathology. METHODS: To examine alterations of several JHDM genes in AD pathology, we performed bioinformatics analyses of JHDM gene expression profiles in brain tissue samples from deceased AD patients. Furthermore, to investigate the possible relationship between alterations in JHDM gene expression profiles and AD pathology in vivo, we examined whether tissue-specific downregulation of JHDM Drosophila homologs (kdm) can affect tauR406W-induced neurotoxicity using transgenic flies containing the UAS-Gal4 binary system. RESULTS: The expression levels of JHDM1A, JHDM2A/2B, and JHDM3A/3B were significantly higher in postmortem brain tissue from patients with AD than from non-demented controls, whereas JHDM1B mRNA levels were downregulated in the brains of patients with AD. Using transgenic flies, we revealed that knockdown of kdm2 (homolog to human JHDM1), kdm3 (homolog to human JHDM2), kdm4a (homolog to human JHDM3A), or kdm4b (homolog to human JHDM3B) genes in the eye ameliorated the tauR406W-engendered defects, resulting in less severe phenotypes. However, kdm4a knockdown in the central nervous system uniquely ameliorated tauR406W-induced locomotion defects by restoring heterochromatin. CONCLUSION: Our results suggest that downregulation of kdm4a expression may be a potential therapeutic target in AD.
		                        		
		                        		
		                        		
		                        			Acetylation
		                        			;
		                        		
		                        			Alzheimer Disease
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			Central Nervous System
		                        			;
		                        		
		                        			Computational Biology
		                        			;
		                        		
		                        			Diptera
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			Drosophila melanogaster
		                        			;
		                        		
		                        			Drosophila
		                        			;
		                        		
		                        			Heterochromatin
		                        			;
		                        		
		                        			Histones
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Locomotion
		                        			;
		                        		
		                        			Methylation
		                        			;
		                        		
		                        			Neurodegenerative Diseases
		                        			;
		                        		
		                        			Neurofibrillary Tangles
		                        			;
		                        		
		                        			Pathology
		                        			;
		                        		
		                        			Phenotype
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			tau Proteins
		                        			;
		                        		
		                        			Tauopathies
		                        			;
		                        		
		                        			Transcriptome
		                        			
		                        		
		                        	
10.Sex Differences in Neuropathology and Cognitive Behavior in APP/PS1/tau Triple-Transgenic Mouse Model of Alzheimer's Disease.
Jun-Ting YANG ; Zhao-Jun WANG ; Hong-Yan CAI ; Li YUAN ; Meng-Ming HU ; Mei-Na WU ; Jin-Shun QI
Neuroscience Bulletin 2018;34(5):736-746
		                        		
		                        			
		                        			Alzheimer's disease (AD) is the most common form of dementia among the elderly, characterized by amyloid plaques, neurofibrillary tangles, and neuroinflammation in the brain, as well as impaired cognitive behaviors. A sex difference in the prevalence of AD has been noted, while sex differences in the cerebral pathology and relevant molecular mechanisms are not well clarified. In the present study, we systematically investigated the sex differences in pathological characteristics and cognitive behavior in 12-month-old male and female APP/PS1/tau triple-transgenic AD mice (3×Tg-AD mice) and examined the molecular mechanisms. We found that female 3×Tg-AD mice displayed more prominent amyloid plaques, neurofibrillary tangles, neuroinflammation, and spatial cognitive deficits than male 3×Tg-AD mice. Furthermore, the expression levels of hippocampal protein kinase A-cAMP response element-binding protein (PKA-CREB) and p38-mitogen-activated protein kinases (MAPK) also showed sex difference in the AD mice, with a significant increase in the levels of p-PKA/p-CREB and a decrease in the p-p38 in female, but not male, 3×Tg-AD mice. We suggest that an estrogen deficiency-induced PKA-CREB-MAPK signaling disorder in 12-month-old female 3×Tg-AD mice might be involved in the serious pathological and cognitive damage in these mice. Therefore, sex differences should be taken into account in investigating AD biomarkers and related target molecules, and estrogen supplementation or PKA-CREB-MAPK stabilization could be beneficial in relieving the pathological damage in AD and improving the cognitive behavior of reproductively-senescent females.
		                        		
		                        		
		                        		
		                        			Alzheimer Disease
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			psychology
		                        			;
		                        		
		                        			Amyloid beta-Protein Precursor
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cyclic AMP Response Element-Binding Protein
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cyclic AMP-Dependent Protein Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Hippocampus
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			psychology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Maze Learning
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Transgenic
		                        			;
		                        		
		                        			Neurofibrillary Tangles
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Plaque, Amyloid
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			psychology
		                        			;
		                        		
		                        			Presenilin-1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sex Characteristics
		                        			;
		                        		
		                        			Spatial Memory
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			tau Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail