1.Decoding the Cellular Trafficking of Prion-like Proteins in Neurodegenerative Diseases.
Chenjun HU ; Yiqun YAN ; Yanhong JIN ; Jun YANG ; Yongmei XI ; Zhen ZHONG
Neuroscience Bulletin 2024;40(2):241-254
The accumulation and spread of prion-like proteins is a key feature of neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, or Amyotrophic Lateral Sclerosis. In a process known as 'seeding', prion-like proteins such as amyloid beta, microtubule-associated protein tau, α-synuclein, silence superoxide dismutase 1, or transactive response DNA-binding protein 43 kDa, propagate their misfolded conformations by transforming their respective soluble monomers into fibrils. Cellular and molecular evidence of prion-like propagation in NDs, the clinical relevance of their 'seeding' capacities, and their levels of contribution towards disease progression have been intensively studied over recent years. This review unpacks the cyclic prion-like propagation in cells including factors of aggregate internalization, endo-lysosomal leaking, aggregate degradation, and secretion. Debates on the importance of the role of prion-like protein aggregates in NDs, whether causal or consequent, are also discussed. Applications lead to a greater understanding of ND pathogenesis and increased potential for therapeutic strategies.
Humans
;
Prions
;
Neurodegenerative Diseases/pathology*
;
Amyloid beta-Peptides
;
Alzheimer Disease
;
alpha-Synuclein
;
tau Proteins
;
Parkinson Disease
2.Advances and Applications of Brain Organoids.
Yang LI ; Peng-Ming ZENG ; Jian WU ; Zhen-Ge LUO
Neuroscience Bulletin 2023;39(11):1703-1716
Understanding the fundamental processes of human brain development and diseases is of great importance for our health. However, existing research models such as non-human primate and mouse models remain limited due to their developmental discrepancies compared with humans. Over the past years, an emerging model, the "brain organoid" integrated from human pluripotent stem cells, has been developed to mimic developmental processes of the human brain and disease-associated phenotypes to some extent, making it possible to better understand the complex structures and functions of the human brain. In this review, we summarize recent advances in brain organoid technologies and their applications in brain development and diseases, including neurodevelopmental, neurodegenerative, psychiatric diseases, and brain tumors. Finally, we also discuss current limitations and the potential of brain organoids.
Animals
;
Mice
;
Humans
;
Induced Pluripotent Stem Cells
;
Brain/pathology*
;
Disease Models, Animal
;
Neurodegenerative Diseases/pathology*
;
Organoids/pathology*
3.Bear bile powder alleviates Parkinson's disease-like behavior in mice by inhibiting astrocyte-mediated neuroinflammation.
Lupeng WANG ; Yuyan BAI ; Yanlin TAO ; Wei SHEN ; Houyuan ZHOU ; Yixin HE ; Hui WU ; Fei HUANG ; Hailian SHI ; Xiaojun WU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(9):710-720
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg-1) for five days, followed by BBP (50, 100, and 200 mg·kg-1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. THe results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL) -1β, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-κB (NF-κB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.
Humans
;
Mice
;
Rats
;
Animals
;
Aged
;
Middle Aged
;
Parkinson Disease/pathology*
;
Astrocytes/pathology*
;
Powders/therapeutic use*
;
Ursidae/metabolism*
;
NF-kappa B/metabolism*
;
Neuroinflammatory Diseases
;
Neurodegenerative Diseases/metabolism*
;
Cyclooxygenase 2/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Bile
;
Mice, Inbred C57BL
;
Microglia
;
Disease Models, Animal
4.Magnetic Resonance Imaging Studies of Neurodegenerative Disease: From Methods to Translational Research.
Neuroscience Bulletin 2023;39(1):99-112
Neurodegenerative diseases (NDs) have become a significant threat to an aging human society. Numerous studies have been conducted in the past decades to clarify their pathologic mechanisms and search for reliable biomarkers. Magnetic resonance imaging (MRI) is a powerful tool for investigating structural and functional brain alterations in NDs. With the advantages of being non-invasive and non-radioactive, it has been frequently used in both animal research and large-scale clinical investigations. MRI may serve as a bridge connecting micro- and macro-level analysis and promoting bench-to-bed translational research. Nevertheless, due to the abundance and complexity of MRI techniques, exploiting their potential is not always straightforward. This review aims to briefly introduce research progress in clinical imaging studies and discuss possible strategies for applying MRI in translational ND research.
Animals
;
Humans
;
Neurodegenerative Diseases/pathology*
;
Translational Research, Biomedical
;
Magnetic Resonance Imaging/methods*
;
Brain/pathology*
;
Head/pathology*
6.Factors Influencing Alzheimer's Disease Risk: Whether and How They are Related to the APOE Genotype.
Rong ZHANG ; Xiaojiao XU ; Hang YU ; Xiaolan XU ; Manli WANG ; Weidong LE
Neuroscience Bulletin 2022;38(7):809-819
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease featuring progressive cognitive impairment. Although the etiology of late-onset AD remains unclear, the close association of AD with apolipoprotein E (APOE), a gene that mainly regulates lipid metabolism, has been firmly established and may shed light on the exploration of AD pathogenesis and therapy. However, various confounding factors interfere with the APOE-related AD risk, raising questions about our comprehension of the clinical findings concerning APOE. In this review, we summarize the most debated factors interacting with the APOE genotype and AD pathogenesis, depict the extent to which these factors relate to APOE-dependent AD risk, and discuss the possible underlying mechanisms.
Alzheimer Disease/pathology*
;
Apolipoprotein E4/genetics*
;
Apolipoproteins E/genetics*
;
Genotype
;
Humans
;
Lipid Metabolism
;
Neurodegenerative Diseases
;
Risk Factors
7.Roles of Gut Microbiota in Pathogenesis of Alzheimer's Disease and Therapeutic Effects of Chinese Medicine.
Ying-Xin SUN ; Xi-Juan JIANG ; Bin LU ; Qing GAO ; Ye-Fei CHEN ; Dan-Bin WU ; Wen-Yun ZENG ; Lin YANG ; Hu-Hu LI ; Bin YU
Chinese journal of integrative medicine 2022;28(11):1048-1056
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by progressive cognitive impairment. The pathogenesis of AD is complex, and its susceptibility and development process are affected by age, genetic and epigenetic factors. Recent studies confirmed that gut microbiota (GM) might contribute to AD through a variety of pathways including hypothalamic pituitary adrenal axis and inflflammatory and immune processes. CM formula, herbs, and monomer enjoy unique advantages to treat and prevent AD. Hence, the purpose of this review is to outline the roles of GM and its core metabolites in the pathogenesis of AD. Research progress of CMs regarding the mechanisms of how they regulate GM to improve cognitive impairment of AD is also reviewed. The authors tried to explore new therapeutic strategies to AD based on the regulation of GM using CM.
Humans
;
Alzheimer Disease/drug therapy*
;
Gastrointestinal Microbiome
;
Hypothalamo-Hypophyseal System
;
Medicine, Chinese Traditional
;
Neurodegenerative Diseases
;
Pituitary-Adrenal System
;
Brain/pathology*
8.New pathogenic insights from large animal models of neurodegenerative diseases.
Peng YIN ; Shihua LI ; Xiao-Jiang LI ; Weili YANG
Protein & Cell 2022;13(10):707-720
Animal models are essential for investigating the pathogenesis and developing the treatment of human diseases. Identification of genetic mutations responsible for neurodegenerative diseases has enabled the creation of a large number of small animal models that mimic genetic defects found in the affected individuals. Of the current animal models, rodents with genetic modifications are the most commonly used animal models and provided important insights into pathogenesis. However, most of genetically modified rodent models lack overt neurodegeneration, imposing challenges and obstacles in utilizing them to rigorously test the therapeutic effects on neurodegeneration. Recent studies that used CRISPR/Cas9-targeted large animal (pigs and monkeys) have uncovered important pathological events that resemble neurodegeneration in the patient's brain but could not be produced in small animal models. Here we highlight the unique nature of large animals to model neurodegenerative diseases as well as the limitations and challenges in establishing large animal models of neurodegenerative diseases, with focus on Huntington disease, Amyotrophic lateral sclerosis, and Parkinson diseases. We also discuss how to use the important pathogenic insights from large animal models to make rodent models more capable of recapitulating important pathological features of neurodegenerative diseases.
Amyotrophic Lateral Sclerosis/genetics*
;
Animals
;
Brain/pathology*
;
Disease Models, Animal
;
Gene Editing
;
Neurodegenerative Diseases/pathology*
;
Swine
9.Gait Ignition Failure in JNPL3 Human Tau-mutant Mice
HoChung JANG ; Jung Hwa RYU ; Kyung Min SHIN ; Na Young SEO ; Gyu Hyun KIM ; Yang Hoon HUH ; Ae Nim PAE ; Kea Joo LEE
Experimental Neurobiology 2019;28(3):404-413
Cognitive impairments and motor dysfunction are commonly observed behavioral phenotypes in genetic animal models of neurodegenerative diseases. JNPL3 transgenic mice expressing human P301L-mutant tau display motor disturbances with age- and gene dose-dependent development of neurofibrillary tangles, suggesting that tau pathology causes neurodegeneration associated with motor behavioral abnormalities. Although gait ignition failure (GIF), a syndrome marked by difficulty in initiating locomotion, has been described in patients with certain forms of tauopathies, transgenic mouse models mirroring human GIF syndrome have yet to be reported. Using the open field and balance beam tests, here we discovered that JNPL3 homozygous mice exhibit a marked delay of movement initiation. The elevated plus maze excluded the possibility that hesitation to start in JNPL3 mice was caused by enhanced levels of anxiety. Considering the normal gait ignition in rTg4510 mice expressing the same mutant tau in the forebrain, GIF in JNPL3 mice seems to arise from abnormal tau deposition in the hindbrain areas involved in locomotor initiation. Accordingly, immunohistochemistry revealed highly phosphorylated paired helical filament tau in JNPL3 brainstem areas associated with gait initiation. Together, these findings demonstrate a novel behavioral phenotype of impaired gait initiation in JNPL3 mice and underscore the value of this mouse line as a tool to study the neural mechanisms and potential treatments for human GIF syndrome.
Animals
;
Anxiety
;
Brain Stem
;
Cognition Disorders
;
Gait
;
Humans
;
Immunohistochemistry
;
Locomotion
;
Mice
;
Mice, Transgenic
;
Models, Animal
;
Neurodegenerative Diseases
;
Neurofibrillary Tangles
;
Pathology
;
Phenotype
;
Prosencephalon
;
Rhombencephalon
;
Tauopathies
10.The First Generation of iPSC Line from a Korean Alzheimer's Disease Patient Carrying APP-V715M Mutation Exhibits a Distinct Mitochondrial Dysfunction
Ling LI ; Jee Hoon ROH ; Hee Jin KIM ; Hyun Jung PARK ; Minchul KIM ; Wonyoung KOH ; Hyohoon HEO ; Jong Wook CHANG ; Mahito NAKANISHI ; Taeyoung YOON ; Duk L NA ; Jihwan SONG
Experimental Neurobiology 2019;28(3):329-336
Alzheimer's Disease (AD) is a progressive neurodegenerative disease, which is pathologically defined by the accumulation of amyloid plaques and hyper-phosphorylated tau aggregates in the brain. Mitochondrial dysfunction is also a prominent feature in AD, and the extracellular Aβ and phosphorylated tau result in the impaired mitochondrial dynamics. In this study, we generated an induced pluripotent stem cell (iPSC) line from an AD patient with amyloid precursor protein (APP) mutation (Val715Met; APP-V715M) for the first time. We demonstrated that both extracellular and intracellular levels of Aβ were dramatically increased in the APP-V715M iPSC-derived neurons. Furthermore, the APP-V715M iPSC-derived neurons exhibited high expression levels of phosphorylated tau (AT8), which was also detected in the soma and neurites by immunocytochemistry. We next investigated mitochondrial dynamics in the iPSC-derived neurons using Mito-tracker, which showed a significant decrease of anterograde and retrograde velocity in the APP-V715M iPSC-derived neurons. We also found that as the Aβ and tau pathology accumulates, fusion-related protein Mfn1 was decreased, whereas fission-related protein DRP1 was increased in the APP-V715M iPSC-derived neurons, compared with the control group. Taken together, we established the first iPSC line derived from an AD patient carrying APP-V715M mutation and showed that this iPSC-derived neurons exhibited typical AD pathological features, including a distinct mitochondrial dysfunction.
Alzheimer Disease
;
Amyloid
;
Brain
;
Carisoprodol
;
Humans
;
Immunohistochemistry
;
Mitochondrial Dynamics
;
Neurites
;
Neurodegenerative Diseases
;
Neurons
;
Pathology
;
Plaque, Amyloid
;
Pluripotent Stem Cells

Result Analysis
Print
Save
E-mail