1.Quercetin promotes neurite growth through enhancing intracellular cAMP level and GAP-43 expression.
Ming-Ming CHEN ; Zhi-Qi YIN ; Lu-Yong ZHANG ; Hong LIAO
Chinese Journal of Natural Medicines (English Ed.) 2015;13(9):667-672
The present study was designed to investigate the role of quercetin on neurite growth in N1E-115 cells and the underlying mechanisms. Quercetin was evaluated for its effects on cell numbers of neurites, neurite length, intracellular cAMP content, and Gap-43 expression in N1E-115 cells in vitro by use of microscopy, LANCE(tm) cAMP 384 kit, and Western blot analysis, respectively. Our results showed that quercetin could increase the neurite length in a concentration-dependent manner, but had no effect on the numbers of cells. Quercetin significantly increased the expression of cellular cAMP in a time- and concentration-dependent manner. The Gap-43 expression was up-regulated in a time-dependent manner. In conclusion, quercetin could promote neurite growth through increasing the intracellular cAMP level and Gap-43 expression.
Cell Line
;
Cyclic AMP
;
metabolism
;
GAP-43 Protein
;
metabolism
;
Nerve Regeneration
;
Neurites
;
drug effects
;
Plant Extracts
;
pharmacology
;
Quercetin
;
pharmacology
;
Signal Transduction
2.miR-124a promotes neurite outgrowth by inhibiting iASPP expression.
Lifang LIN ; Xi GU ; Shuhu LIU ; Xuemin WANG
Journal of Southern Medical University 2014;34(1):31-35
OBJECTIVETo investigate the role of iASPP as the target gene of miR-124a in neural development.
METHODSUsing the online bioinformatical tool (TargetScan) and by reviewing the relevant studies, we selected iASPP as the candidate target gene of miR-124a involved in early-stage neuronal differentiation. Luciferase reporter assay was used to verify the candidate gene. We transfected M17 cells with a miR-124a overexpression plasmid and detected the changes in the protein expression of iASPP using Western blotting. With retinoic acid-induced M17 cells as the neuronal differentiation model, the role of iASPP in early-stage neuronal differentiation was investigated by gene overexpression and gene interference techniques.
RESULTSmiR-124a inhibited the expression of iASPP in M17 cells by interacting with the 3'UTR of iASPP gene. miR-124a promoted neurite outgrowth of the cells, which was blocked by iASPP overexpression.
CONCLUSIONmiR-124a promotes neurite outgrowth of M17 cells by inhibiting iASPP expression.
3' Untranslated Regions ; Gene Expression ; Humans ; Intracellular Signaling Peptides and Proteins ; genetics ; metabolism ; MicroRNAs ; genetics ; Neurites ; metabolism ; Repressor Proteins ; genetics ; metabolism ; Transfection
3.Effects of esophageal cancer on the nerve fiber growth and guidance.
Guang-Hui XU ; Fan FENG ; Guo-Hong ZHAO ; Jian-Qin KANG ; Xue-Wen YANG ; Kang CHEN ; Yong GUO ; Hong-Wei ZHANG
Chinese Journal of Gastrointestinal Surgery 2013;16(5):474-478
OBJECTIVETo establish the co-culture model of cancer cells and nerve, and to study the influence of esophageal cancer on nerve fibers.
METHODSMouse dorsal root ganglion (DRG) was cultured in sterile conditions by primary isolation. Co-culture model was established using matrigel matrix-embedded DRG and EC109 (esophageal cancer cell line) transfected with green fluorescent protein. Morphological changes of DRG, number and area of neurites were quantified with microscopy and image analysis. Furthermore, the mRNA expression of nerve growth factor(NGF) and brain derived neurotrophic factor(BDNF) was detected by real-time PCR.
RESULTSIn mixture cultivation model of EC109 and DRG cells, directional outgrowth of neurite projecting to EC109 was observed, and the length of neurite was markedly longer in proximal field compared to distal field. The number and area of neurite were 87 and 346 μm(2) in proximal field respectively, and 23 and 141 μm(2) in distal field on the 7th day. The expressions of NGF and BDNF were up-regulated in esophageal cancer cells.
CONCLUSIONSThe esophageal cancer may play an important role in nerve fiber growth and guidance, which may be associated with the up-regulation of NGF and BDNF expressions.
Animals ; Coculture Techniques ; Esophageal Neoplasms ; metabolism ; Ganglia, Spinal ; Humans ; Neurites ; Rats, Sprague-Dawley ; Up-Regulation
4.Phosphatidylinositol 4-phosphate 5-kinase alpha negatively regulates nerve growth factor-induced neurite outgrowth in PC12 cells.
Experimental & Molecular Medicine 2013;45(3):e16-
Neurite outgrowth, a cell differentiation process involving membrane morphological changes, is critical for neuronal network and development. The membrane lipid, phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), is a key regulator of many important cell surface events of membrane signaling, trafficking and dynamics. This lipid is produced mainly by the type I PI 4-phosphate 5-kinase (PIP5K) family members. In this study, we addressed whether PIP5Kalpha, an isoform of PIP5K, could have a role in neurite outgrowth induced by nerve growth factor (NGF). For this purpose, we knocked down PIP5Kalpha in PC12 rat pheochromocytoma cells by stable expression of PIP5Kalpha microRNA that significantly reduced PIP5Kalpha expression and PIP2 level. Interestingly, NGF-induced neurite outgrowth was more prominent in PIP5Kalpha-knockdown (KD) cells than in control cells. Conversely, add-back of PIP5Kalpha into PIP5Kalpha KD cells abrogated the effect of NGF on neurite outgrowth. NGF treatment activated PI 3-kinase (PI3K)/Akt pathway, which seemed to be associated with reactive oxygen species generation. Similar to the changes in neurite outgrowth, the PI3K/Akt activation by NGF was potentiated by PIP5Kalpha KD, but was attenuated by the reintroduction of PIP5Kalpha. Moreover, exogenously applied PIP2 to PIP5Kalpha KD cells also suppressed Akt activation by NGF. Together, our results suggest that PIP5Kalpha acts as a negative regulator of NGF-induced neurite outgrowth by inhibiting PI3K/Akt signaling pathway in PC12 cells.
Animals
;
Enzyme Activation/drug effects
;
Gene Knockdown Techniques
;
Mice
;
Nerve Growth Factor/*pharmacology
;
Neurites/drug effects/*enzymology
;
PC12 Cells
;
Phosphatidylinositol 3-Kinases/metabolism
;
Phosphatidylinositol 4,5-Diphosphate/metabolism
;
Phosphorylation/drug effects
;
Phosphotransferases (Alcohol Group Acceptor)/*metabolism
;
Proto-Oncogene Proteins c-akt/metabolism
;
Rats
;
Reactive Oxygen Species/metabolism
;
Signal Transduction/drug effects
5.Potential involvement of abnormal increased SUMO-1 in modulation of the formation of Alzheimer's disease senile plaques and neuritic dystrophy in APP/PS1 transgenic mice.
Xiao-Yan ZHAO ; Dan-Dan WANG ; Ye SHAN ; Cui-Qing ZHU
Acta Physiologica Sinica 2013;65(3):253-262
Small ubiquitin-related modifiers (SUMOs) belong to an important class of ubiquitin like proteins. SUMOylation is a post-translational modification process that regulates the functional properties of many proteins, among which are several proteins implicated in neurodegenerative diseases. This study was aimed to investigate the changes of SUMO-1 expression and modification, and the relationship between SUMO-1 and Alzheimer's disease (AD) pathology in APP/PS1 transgenic AD mice. Using Western blot, co-immunoprecipitation and immunofluorescent staining methods, the SUMO-1 expression and modification and its relation to tau, amyloid precursor protein (APP) and β-amyloid protein (Aβ) in the 12-month-old APP/PS1 transgenic AD mice were analyzed. The results showed that: (1) Compared with the normal wild-type mice, the expression and modification of SUMO-1 increased in brain of AD mice, which was accompanied by an increase of ubiquitination; (2) In RIPA soluble protein fraction of cerebral cortex, co-immunoprecipitation analysis showed tau SUMOylated by SUMO-1 increased in AD mice, however, AT8 antibody labeled phosphorylated tau was less SUMOylated whereas PS422 antibody labeled phosphorylated tau was similar to control mice; (3) Double immunofluorescent staining showed that SUMO-1 could distributed in amyloid plaques, appearing that some of SUMO-1 diffused in centre of some plaques and some of SUMO-1 co-localized with AT8 labeled phosphorylated tau forming punctate aggregates around amyloid plaques which was concerned as dystrophic neurites, however, less Aβ, APP and PS422 labeled phosphorylated tau were found co-localized with SUMO-1. These results suggest that SUMO-1 expression and modification increase abnormally in transgenic AD mice, which may participate in modulation of the formation of senile plaques and dystrophic neurites.
Alzheimer Disease
;
physiopathology
;
Amyloid beta-Peptides
;
metabolism
;
Amyloid beta-Protein Precursor
;
metabolism
;
Animals
;
Brain
;
pathology
;
Mice
;
Mice, Transgenic
;
Neurites
;
pathology
;
Phosphorylation
;
Plaque, Amyloid
;
physiopathology
;
SUMO-1 Protein
;
metabolism
;
Sumoylation
;
tau Proteins
;
metabolism
6.AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth.
Kun ZHU ; Xiaoping CHEN ; Jianghong LIU ; Haihong YE ; Li ZHU ; Jane Y WU
Protein & Cell 2013;4(2):155-161
Down syndrome cell adhesion molecule (DSCAM) acts as a netrin-1 receptor and mediates attractive response of axons to netrin-1 in neural development. However, the signaling mechanisms of netrin-DSCAM remain unclear. Here we report that AMP-activated protein kinase (AMPK) interacts with DSCAM through its γ subunit, but does not interact with DCC (deleted in colorectal cancer), another major receptor for netrin-1. Netrin-treatment of cultured cortical neurons leads to increased phosphorylation of AMPK. Both AMPK mutant with dominant-negative effect and AMPK inhibitor can significantly suppress netrin-1 induced neurite outgrowth. Together, these findings demonstrate that AMPK interacts with DSCAM and plays an important role in netrin-1 induced neurite outgrowth. Our study uncovers a previously unknown component, AMPK, in netrin-DSCAM signaling pathway.
AMP-Activated Protein Kinases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Animals
;
Cell Adhesion Molecules
;
genetics
;
metabolism
;
Cells, Cultured
;
HEK293 Cells
;
Humans
;
Mice
;
Nerve Growth Factors
;
pharmacology
;
Netrin-1
;
Neurites
;
physiology
;
Neurons
;
cytology
;
drug effects
;
metabolism
;
Phosphorylation
;
Protein Binding
;
Protein Kinase Inhibitors
;
pharmacology
;
RNA Interference
;
RNA, Small Interfering
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
Signal Transduction
;
drug effects
;
Transfection
;
Tumor Suppressor Proteins
;
pharmacology
7.Sodium nitrite induces PC12 cell differentiation.
Wen-Yi YAN ; Dong-Ming YU ; Chao-Shen HUANG-FU
Acta Pharmaceutica Sinica 2012;47(9):1147-1152
To investigate the potential ability of the nitrite to induce neuronal differentiation of PC12 cells, cultured PC12 cells planted on matrigel in the presence or absence of sodium nitrite were employed as model, nerve growth factor (NGF) served as a positive control. After 48 h, sodium nitrite enhanced cell viability and vascular endothelial growth factor (VEGF) secretion. Same as the effect of NGF, sodium nitrite (1.4 mmol x L(-1)) treated cultures contained a greater proportion of cells bearing neurites and neurites were much longer than those found in negative control cultures (P < 0.05). Compared with the negative control, sodium nitrite (1.4 mmol x L(-1)) also upregulated the expression of VEGF mRNA (P < 0.05) and hypoxia inducible factor 1 alpha (HIF-1 alpha) or VEGF protein expression (P < 0.05) in cultures of PC12 cells. On the other hand, these effects of the sodium nitrite were likely mediated by HIF-1alpha, since their effects were antagonized by addition of HIF-1alpha inhibitor YC-1. Taken together, these results suggest that low doses of sodium nitrite could induce neurite outgrowth in PC12 cells by activating the HIF-1alpha-VEGF pathway.
Animals
;
Cell Differentiation
;
drug effects
;
Cell Survival
;
drug effects
;
Food Preservatives
;
pharmacology
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
genetics
;
metabolism
;
Neurites
;
drug effects
;
PC12 Cells
;
RNA, Messenger
;
metabolism
;
Rats
;
Sodium Nitrite
;
pharmacology
;
Up-Regulation
;
Vascular Endothelial Growth Factor A
;
genetics
;
secretion
8.Homophilic interaction of the L1 family of cell adhesion molecules.
Experimental & Molecular Medicine 2012;44(7):413-423
Homophilic interaction of the L1 family of cell adhesion molecules plays a pivotal role in regulating neurite outgrowth and neural cell networking in vivo. Functional defects in L1 family members are associated with neurological disorders such as X-linked mental retardation, multiple sclerosis, low-IQ syndrome, developmental delay, and schizophrenia. Various human tumors with poor prognosis also implicate the role of L1, a representative member of the L1 family of cell adhesion molecules, and ectopic expression of L1 in fibroblastic cells induces metastasis-associated gene expression. Previous studies on L1 homologs indicated that four N-terminal immunoglobulin-like domains form a horseshoe-like structure that mediates homophilic interactions. Various models including the zipper, domain-swap, and symmetry-related models are proposed to be involved in structural mechanism of homophilic interaction of the L1 family members. Recently, cryo-electron tomography of L1 and crystal structure studies of neurofascin, an L1 family protein, have been performed. This review focuses on recent discoveries of different models and describes the possible structural mechanisms of homophilic interactions of L1 family members. Understanding structural mechanisms of homophilic interactions in various cell adhesion proteins should aid the development of therapeutic strategies for L1 family cell adhesion molecule-associated diseases.
Cell Adhesion
;
Crystallography, X-Ray
;
Escherichia coli
;
Humans
;
Immunoglobulins/chemistry
;
Neural Cell Adhesion Molecule L1/*chemistry/*metabolism
;
*Neurites/chemistry/metabolism
;
Protein Conformation
;
*Protein Interaction Domains and Motifs
9.Ginkgolide B promotes axonal growth of retina ganglion cells by anti-apoptosis in vitro.
Zhen-Yu WANG ; Xiao-Fen MO ; Xu-Hua JIANG ; Xian-Fang RONG ; Hua-Mao MIAO
Acta Physiologica Sinica 2012;64(4):417-424
One common feature of glaucoma, optic neuritis and some other optic nerve diseases is sustained and irreversible apoptosis of retinal ganglion cells (RGCs). Ginkgolide B is believed to protect neurons in brain and contribute to neurite outgrowth and synapse formation. The aim of the present study was to explore the effects of Ginkgo biloba extract (EGB761) and ginkgolide B on axonal growth of RCGs. Retina explants were cultured in three-dimensional tissue culture system, and the number and length of neurites were analyzed. Immunohistochemistry staining was performed to confirm that the neurite observed was axon of RGCs. TUNEL and activated caspase-3 staining were also applied to observe RGCs apoptosis. The result shows that neurites of RGCs treated with EGB761 or ginkgolide B were more and longer than those in control. The neurite is proved to be the axon of RGCs by immunostaining. Furthermore, compared with control group, RGCs treated with ginkgolide B showed decreased cellular apoptosis and inhibited caspase-3 activation. These results suggest ginkgolide B can promote RGCs axon growth by protecting RGCs against apoptosis.
Animals
;
Apoptosis
;
Axons
;
drug effects
;
Caspase 3
;
metabolism
;
Ginkgolides
;
pharmacology
;
Lactones
;
pharmacology
;
Neurites
;
drug effects
;
Organ Culture Techniques
;
Plant Extracts
;
pharmacology
;
Rats
;
Retina
;
Retinal Ganglion Cells
;
cytology
;
drug effects
10.In vitro interaction of human pancreatic cancer cells and rat dorsal root ganglia: a co-culture model.
Zhi-sheng LIU ; Ye WANG ; Qiang LI ; Sheng-lin ZHANG ; Yu-rong SHI
Chinese Journal of Oncology 2012;34(4):259-263
OBJECTIVETo establish an in vitro model of perineural invasion (PNI) with co-culture of human pancreatic cancer cells and rat root ganglion, to observe the neurite outgrowth and pancreatic cancer cell proliferation and migration, and to explore the molecular basis of perineural invasion (PNI) of pancreatic cancer.
METHODSHuman pancreatic cancer cell line (MIA PaCa-2) and rat dorsal root ganglion (DRG) were co-cultured in Matrigel matrix to generate the PNI model. The neurite outgrowth, pancreatic cancer cell colony formation, neurite-colony contact and retrograde migration were observed under an inverted microscope. The data were analyzed with the Image-Pro Plus 5.0 system. The proliferative index (PI) was measured by immunohistochemical staining with the Ki-67 antibody. In order to determine the absorbance (A) of the pancreatic cancer cells, MTT assay was used. The apoptotic index (AI) was evaluated by flow cytometry.
RESULTSNeurite outgrowth was stimulated in the presence of pancreatic cancer cells. After 72 hours of the co-culture, MIA PaCa colonies co-cultured with DRG exhibited a significantly larger colony area (242.83 ± 4.92) than that of the control (182.50 ± 5.39, P < 0.001). In the MIA PaCa-2/DRG co-culture system, the neurites exhibited a trend of growing towards the pancreatic cancer cell colony. However, the pancreatic cancer cells showed a trend of retrogradely migrating to the DRG along the neurite outgrowth, when MIA PaCa-2 colonies touched the DRG. The positive rate of Ki-67 nuclear antigen was significantly higher than in the co-culture group. The PI value was higher in the experimental group (12.80%) than that in the control group (6.81%, P < 0.01). The MTT assay showed that proliferation of the pancreatic cancer cells was more active than that in the control group. Flow cytometry analysis showed that the apoptosis rate of the pancreatic cancer cell was 2.46%, significantly lower than that of the control group (4.89%, P < 0.001).
CONCLUSIONSAn in vitro co-culture model of rat dorsal root ganglion and human pancreatic cancer cell line is successfully established in this study. This MIA PaCa-2/DRG co-culture system demonstrates that the neural-pancreatic carcinoma cell interaction is a mutually beneficial process for the growth of neurites and pancreatic carcinoma cells. The pancreatic cancer cells show a trend of migrating to the DRG along the neurite outgrowth.
Animals ; Apoptosis ; Cell Communication ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; Coculture Techniques ; Ganglia, Spinal ; cytology ; metabolism ; Humans ; Neoplasm Invasiveness ; Neurites ; physiology ; Pancreatic Neoplasms ; pathology ; Rats ; Rats, Wistar

Result Analysis
Print
Save
E-mail