1.Analysis of hemagglutinin-neuraminidase gene characteristics of human parainfluenza virus type 3 among children with acute respiratory tract infection in Qingdao city.
Kang Yu HAO ; Zi Ran LIU ; Jin Ling GONG ; Rui SUN ; Feng ZHANG ; Wen Jing WANG ; Jia He GAO ; Zhao Guo WANG
Chinese Journal of Preventive Medicine 2022;56(5):626-631
The purpose was to discuss the infection status of human parainfluenza virus type 3 (HPIV-3) in children with acute respiratory tract infection(ARTI) in Qingdao, Shandong province, and to analyze the gene characteristics of HPIV-3 hemagglutinin-neuraminidase protein (HN). This study was a cross-sectional study. A total of 1 674 throat swab samples were collected randomly from children with ARTI, in the three hospitals (Qingdao Women and Children's Hospital, West Coast Branch of Affiliated Hospital of Qingdao University, Laoshan Branch of Affiliated Hospital of Qingdao University) from January 2018 to December 2019. Multiplex real-time fluorescence RT-PCR was performed to screen HPIV-3 positive specimens. For HPIV-3 positive specimens, nested PCR was used to amplify the full-length HN gene of HPIV-3. The HN gene was sequenced and compared with the representative strains of HPIV-3 in GenBank, and the phylogenetic tree was established. As results, this study collected 1 674 samples, in which there were 90 HPIV-3 positive samples showed and the detection rate was 5.37%. Among positive specimens, the number of samples from children under 6 years old was 88, accounting for 97.78%. HPIV-3 positive cases were mainly distributed in spring and summer. The full-length sequences of 44 HPIV-3 HN genes were obtained by nested PCR method. Sequence alignment and evolutionary analysis showed that the HPIV-3HN gene belonged to the C3a and C3b branches of C3 genotype, with 30 strains of subtype C3a and 14 strains of subtype C3b. The nucleotide and amino acid homology of the amplified 44 strains of the HPIV-3 HN gene in Qingdao were 97.0%-100.0% and 98.5%-100.0%, respectively. In conclusion, from 2018 to 2019, the C3a and C3b branches of HPIV-3 C3 genotype were circulating prevalent in Qingdao, Shandong province. HN gene variation rate was low, but showed certain regional characteristics in evolution.
Child
;
Child, Preschool
;
Cross-Sectional Studies
;
Female
;
Hemagglutinins
;
Humans
;
Neuraminidase
;
Parainfluenza Virus 3, Human/genetics*
;
Phylogeny
;
Respiratory Tract Infections/epidemiology*
;
Viral Proteins
2.Phylogenetic and pathogenicity analysis of influenza B virus strain B/Guangxi-Jiangzhou/1352/2018.
Qingxin MENG ; Pengtao JIAO ; Lei SUN ; Dayan WANG ; Tingrong LUO ; Wenhui FAN ; Wenjun LIU
Chinese Journal of Biotechnology 2022;38(9):3390-3405
Influenza B virus (IBV) is more likely to cause complications than influenza A virus (IAV) and even causes higher disease burden than IAV in a certain season, but IBV has received less attention. In order to analyze the genetic evolution characteristics of the clinical strain IBV (B/Guangxi-Jiangzhou/1352/2018), we constructed genetic evolution trees and analyzed the homology and different amino acids of hemagglutinin and neuraminidase referring to the vaccine strains recommended by World Health Organization (WHO). We found that strain B/Guangxi-Jiangzhou/1352/2018 was free of interlineage reassortment and poorly matched with the vaccine strain B/Colorado/06/2017 of the same year. We also determined the median lethal dose (LD50) and the pathogenicity of strain B/Guangxi-Jiangzhou/1352/2018 in mice. The results showed that the LD50 was 105.9 TCID50 (median tissue culture infective dose), the IBV titer in the lungs reached peak 1 d post infection and the mRNA level of the most of inflammatory cytokines in the lungs reached peak 12 h post infection. The alveoli in the lungs were severely damaged and a large number of inflammatory cells were infiltrated post infection. The study demonstrated that the clinical strain IBV (B/Guangxi-Jiangzhou/1352/2018) could infect mice and induce typical lung inflammation. This will facilitate the research on the pathogenesis and transmission mechanism of IBV, and provide an ideal animal model for evaluation of new vaccines, antiviral and anti-inflammatory drug.
Amino Acids/genetics*
;
Animals
;
Antiviral Agents/pharmacology*
;
China
;
Cytokines/metabolism*
;
Hemagglutinins/metabolism*
;
Humans
;
Influenza B virus/pathogenicity*
;
Influenza, Human/virology*
;
Mice
;
Neuraminidase/genetics*
;
Orthomyxoviridae Infections/virology*
;
Phylogeny
;
RNA, Messenger/metabolism*
;
Virulence/genetics*
3.Genetic characteristics of hemagglutinin and neuraminidase of avian influenza A (H7N9) virus in Guizhou province, 2014-2017.
Y H WAN ; L ZHUANG ; Q N ZHENG ; L J REN ; L FU ; W J JIANG ; G P TANG ; D Z ZHANG ; S J LI
Chinese Journal of Epidemiology 2018;39(11):1465-1471
Objective: To understand the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) as well as the disease risk of influenza virus A H7N9 in Guizhou province. Methods: RNAs were extracted and sequenced from HA and NA genes of H7N9 virus strains obtained from 18 cases of human infection with H7N9 virus and 6 environmental swabs in Guizhou province during 2014-2017. Then the variation and the genetic evolution of the virus were analyzed by using a series of bioinformatics software package. Results: Homology analysis of HA and NA genes revealed that 2 strains detected during 2014-2015 shared 98.8%-99.2% and 99.2% similarities with vaccine strains A/Shanghai/2/2013 and A/Anhui/1/2013 recommended by WHO, respectively. Two strains detected in 2016 and 14 strains detected in 2017 shared 98.2%-99.3% and 97.6%-98.8% similarities with vaccine strain A/Hunan/02650/2016, respectively. Other 6 stains detected in 2017 shared 99.1%-99.4% and 98.9%-99.3% similarities with strain A/Guangdong/17SF003/2016, respectively. Phylogenetic analysis showed that all the strains were directly evolved in the Yangtze River Delta evolution branch, but they were derived from different small branch. PEVPKRKRTAR↓GLF was found in 6 of 24 strains cleavage site sequences of HA protein, indicating the characteristic of highly pathogenic avian influenza virus. Mutations A134V, G186V and Q226L at the receptor binding sites were found in the HA. All the strains had a stalk deletion of 5 amino acid residue "QISNT" in NA protein, and drug resistance mutation R294K occurred in strain A/Guizhou-Danzhai/18980/2017. In addition, potential glycosylation motifs mutations NCS42NCT were found in the NA of 9 of 24 strains. Conclusions: HA and NA genes of avian influenza A (H7N9) virus showed genetic divergence in Guizhou province during 2014-2017. The mutations of key sites might enhance the virulence of the virus, human beings are more susceptible to it. Hence, the risk of infection is increasing.
Animals
;
Base Sequence
;
Birds
;
China/epidemiology*
;
Genome, Viral
;
Hemagglutinin Glycoproteins, Influenza Virus/immunology*
;
Hemagglutinins/genetics*
;
Humans
;
Influenza A Virus, H7N9 Subtype/isolation & purification*
;
Influenza in Birds
;
Influenza, Human/virology*
;
Neuraminidase/genetics*
;
Phylogeny
;
RNA, Viral/genetics*
;
Sequence Analysis, DNA
4.Optimized clade 2.3.2.1c H5N1 recombinant-vaccine strains against highly pathogenic avian influenza.
Jin Wook JANG ; Chung Young LEE ; Il hwan KIM ; Jun Gu CHOI ; Youn Jeong LEE ; Seong Su YUK ; Ji Ho LEE ; Chang Seon SONG ; Jae Hong KIM ; Hyuk Joon KWON
Journal of Veterinary Science 2017;18(S1):299-306
A/Puerto Rico/8/34 (PR8)-derived recombinant viruses have been used for seasonal flu vaccines; however, they are insufficient for vaccines against some human-fatal H5N1 highly pathogenic avian influenza (HPAI) viruses (HPAIV) due to low productivity. Additionally, the polymerase basic 2 (PB2) protein, an important mammalian-pathogenicity determinant, of PR8 possesses several mammalian-pathogenic mutations. We previously reported two avian PB2 genes (01310 and 0028) related to efficient replication in embryonated chicken eggs (ECEs) and nonpathogenicity in BALB/c mice. In this study, we generated PR8-derived H5N1 recombinant viruses harboring hemagglutinin (attenuated) and neuraminidase genes of a clade 2.3.2.1c H5N1 HPAIV (K10-483), as well as the 01310 or 0028 PB2 genes, and investigated their replication and immunogenicity. Compared with a control virus harboring six internal PR8 genes (rK10-483), the recombinant viruses possessing the 01310 and 0028 PB2 genes showed significantly higher replication efficiency in ECEs and higher antibody titers in chickens. In contrast to rK10-483, none of the viruses replicated in BALB/c mice, and all showed low titers in Madin-Darby canine kidney cells. Additionally, the recombinant viruses did not induce a neutralization antibody but elicited decreased protective immune responses against K10-483 in mice. Thus, the highly replicative and mammalian nonpathogenic recombinant H5N1 strains might be promising vaccine candidates against HPAI in poultry.
Animals
;
Chickens
;
Efficiency
;
Eggs
;
Hemagglutinins
;
Influenza in Birds*
;
Influenza Vaccines
;
Kidney
;
Mice
;
Neuraminidase
;
Ovum
;
Poultry
;
Reverse Genetics
;
Seasons
;
Vaccines
;
Virulence
5.Effect of the fourth nucleotide at the 3′ end of neuraminidase and matrix viral genomic RNA on the pathogenicity of influenza virus A/PR/8/34.
Chung Young LEE ; Hyuk Joon KWON ; Thanh Trung NGUYEN ; Ilhwan KIM ; Hyung Kwan JANG ; Jae Hong KIM
Journal of Veterinary Science 2017;18(S1):307-313
Twelve nucleotides located at the 3′ end of viral genomic RNA (vRNA) are conserved among influenza A viruses (IAV) and have a promoter function. Hoffmann's 8-plasmid reverse genetics vector system introduced mutations at position 4, C nucleotide (C4) to U nucleotide (U4), of the 3′ ends of neuraminidase (NA) and matrix (M) vRNAs of wild-type A/PR/8/34 (PR8). This resulted in a constellation of C4 and U4 vRNAs coding for low (polymerases) and relatively high (all others) copy number proteins, respectively. U4 has been reported to increase promoter activity in comparison to C4, but the constellation effect on the replication efficiency and pathogenicity of reverse genetics PR8 (rgPR8) has not been fully elucidated. In the present study, we generated 3 recombinant viruses with C4 in the NA and/or M vRNAs and rgPR8 by using reverse genetics and compared their pathobiological traits. The mutant viruses showed lower replication efficiency than rgPR8 due to the low transcription levels of NA and/or M genes. Furthermore, C4 in the NA and/or M vRNAs induced lower PR8 virus pathogenicity in BALB/c mice. The results suggest that the constellation of C4 and U4 among vRNAs may be one of the multigenic determinants of IAV pathogenicity.
Animals
;
Clinical Coding
;
Influenza A virus
;
Influenza, Human*
;
Mice
;
Neuraminidase*
;
Nucleotides
;
Orthomyxoviridae*
;
Reverse Genetics
;
RNA*
;
Virulence*
6.Susceptibility of Influenza B Viruses to Neuraminidase Inhibitors Isolated during 2013-2014 Influenza Season in Mainland China.
Weijuang HUANG ; Xiyan LI ; Minju TAN ; Hejiang WEI ; Yanhui CHENG ; Junfeng GUO ; Zhao WANG ; Ning XIAO ; Dayan WANG ; Yuelong SHU
Chinese Journal of Virology 2015;31(2):152-156
Data based on the antiviral-resistant phenotyping characteristics of 884 influenza B viruses circulating in mainland China from October 2013 to March 2014 were analyzed to assess the susceptibility of influenza B viruses to neuraminidase inhibitors. All 884 viruses were sensitive to oseltamivir; two viruses (0.23%) had reduced sensitivity to zanamivir and all other viruses were sensitive to zanamivir. Among the 38 viruses with a B/Victoria lineage, B/Shandong-Kuiwen/1195/2014 exhibited a half-maximal inhibitory concentration (IC50) for zanamivir that was elevated by 5. 12-fold (1.78 nM) compared with neuraminidase inhibitors sensitive to the reference virus (0.34 nM), suggesting that it exhibited reduced inhibition by zanamivir. D35G, N59D and S402T (39, 64 and 399 with N2 number) amino-acid substitutions in the NA gene were detected with no previously reported antiviral-resistant substitutions. Among viruses with the 846 B/Yamagata lineage, B/Hunan-Lingling/350/2013 exhibited a 7.99-fold elevated IC50 for zanamivir (2.72 nM) compared with neuraminidase inhibitors sensitive to the reference virus (0.34 nM), suggesting that it exhibited reduced inhibition by zanamivir. D197N (N2 number), a previously reported antiviral resistant-related amino-acid substitution in the NA gene, was detected in B/Hunan-Lingling/350/2013. These data suggest that recently circulating influenza B viruses in mainland China have retained susceptibility to neuraminidase inhibitors.
Amino Acid Substitution
;
Antiviral Agents
;
pharmacology
;
China
;
epidemiology
;
Drug Resistance, Viral
;
Enzyme Inhibitors
;
pharmacology
;
Humans
;
Influenza B virus
;
drug effects
;
enzymology
;
genetics
;
isolation & purification
;
Influenza, Human
;
epidemiology
;
virology
;
Microbial Sensitivity Tests
;
Neuraminidase
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Viral Proteins
;
antagonists & inhibitors
;
genetics
;
metabolism
7.Analysis of the Genetic Evolution of Neuraminidases of Influenza A Subtype N9 Viruses.
Chinese Journal of Virology 2015;31(2):139-144
This study analyzed the genetic evolution of neuraminidases (NAs) of influenza A subtype N9 viruses with the aim of determining the genetic origin of the novel avian A/H7N9 influenza virus. The NA sequences of influenza A subtype N9 viruses available from NCBI were used to construct a phylogenetic tree using the programs ClustalX 2.0 and MEGA 6.0. This analysis indicated that the novel avian A/H7N9 influenza virus is located in the modern Eurasian phylogenetic cluster. This cluster was then further analyzed by estimating the overall rate of evolutionary change and the selective pressure at the nucleotide level using the program BEAST 2.1.2 and the web interface Datamonkey, and by generating an amino acid sequence entropy plot using Bioedit software. In this cluster, the mean rate of nucleotide substitutions in NA was found to be 3.8354 x 10(-3) and the mean ratio of non-synonymous (dN) to synonymous (dS) substitutions per site (dN/dS) was 0.140413. A particularly high level of amino acid mutation entropy was identified at nucleotides 16, 19, 40, 53, 81, 84, 112, 256, 335, 359, and 401. This genetic evolution analysis suggests that the nucleotide substitutions that characterize the novel avian A/H7N9 influenza virus neuraminidase are likely to result from the overall genetic evolution of influenza A subtype N9 virus NAs, and not from selective stress. Phylogenetic analysis suggests that the influenza A virus (A/duck/Siberia/700/1996(H11N9)) isolated in 1996 appears to be the common ancestor of the more recent influenza A subtype N9 viruses NAs.
Amino Acid Substitution
;
Animals
;
Birds
;
Evolution, Molecular
;
Humans
;
Influenza A Virus, H7N9 Subtype
;
chemistry
;
enzymology
;
genetics
;
Influenza in Birds
;
virology
;
Influenza, Human
;
virology
;
Molecular Sequence Data
;
Neuraminidase
;
chemistry
;
genetics
;
Phylogeny
;
Sequence Homology, Amino Acid
;
Viral Proteins
;
chemistry
;
genetics
8.Analysis of HA and NA Genes of Influenza A H1N1 Virus in Yunnan Province during 2009-2014.
Juan LI ; Xiaonan ZHAO ; Yihui CAO ; Deming NING ; Xiaoqing FU ; Wen XU
Chinese Journal of Virology 2015;31(6):674-678
To analyze influenza pathogen spectrum in Yunnan province during 2009-2014 years, and analyze HA and NA genes of influenza A H1N1. Analysis was made on the monitoring date of influenza cases in Yunnan province in recent 6 years, 23 strains of influenza virus of HA and NA gene was sequenced and analyzed by MEGA 5 software to construct phylogenetic tree. 4 times of influenza AH1N1 epidemic peak were monitored from 2009-2014 years in Yunnan Province, as the nucleic acid detection results of influenza A H1N1 accounted for 28.8% of the total. The sequencing result showed that HA and NA gene were divided into 3 groups, one was detected with H275Y mutation strains. Influenza A H1N1 is one of the important subtypes in Yunnan province and their genes have divided into three branches during the period of 2009-2014 years, the vast majority of influenza a H1N1 are still sensitive to neuraminidase inhibitors.
China
;
epidemiology
;
Hemagglutinin Glycoproteins, Influenza Virus
;
genetics
;
metabolism
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
classification
;
enzymology
;
genetics
;
isolation & purification
;
Influenza, Human
;
epidemiology
;
virology
;
Molecular Sequence Data
;
Mutation
;
Neuraminidase
;
genetics
;
metabolism
;
Phylogeny
;
Viral Proteins
;
genetics
;
metabolism
10.Production and immunogenicity of chimeric virus-like particles containing the spike glycoprotein of infectious bronchitis virus.
Lishan LV ; Xiaoming LI ; Genmei LIU ; Ran LI ; Qiliang LIU ; Huifang SHEN ; Wei WANG ; Chunyi XUE ; Yongchang CAO
Journal of Veterinary Science 2014;15(2):209-216
Infectious bronchitis virus (IBV) poses a severe threat to the poultry industry and causes heavy economic losses worldwide. Vaccination is the most effective method of preventing infection and controlling the spread of IBV, but currently available inactivated and attenuated virus vaccines have some disadvantages. We developed a chimeric virus-like particle (VLP)-based candidate vaccine for IBV protection. The chimeric VLP was composed of matrix 1 protein from avian influenza H5N1 virus and a fusion protein neuraminidase (NA)/spike 1 (S1) that was generated by fusing IBV S1 protein to the cytoplasmic and transmembrane domains of NA protein of avian influenza H5N1 virus. The chimeric VLPs elicited significantly higher S1-specific antibody responses in intramuscularly immunized mice and chickens than inactivated IBV viruses. Furthermore, the chimeric VLPs induced significantly higher neutralization antibody levels than inactivated H120 virus in SPF chickens. Finally, the chimeric VLPs induced significantly higher IL-4 production in mice. These results demonstrate that chimeric VLPs have the potential for use in vaccines against IBV infection.
Animals
;
Antibodies, Viral/blood
;
*Chickens
;
Chimera/genetics/immunology
;
Coronavirus Infections/prevention & control/*veterinary/virology
;
Female
;
*Immunity, Innate
;
Infectious bronchitis virus/genetics/*immunology
;
Influenza A Virus, H5N1 Subtype/genetics/immunology
;
Injections, Intramuscular/veterinary
;
Mice
;
Mice, Inbred BALB C
;
Neuraminidase/genetics
;
Poultry Diseases/*prevention & control/virology
;
Recombinant Fusion Proteins/genetics/immunology
;
Spike Glycoprotein, Coronavirus/genetics/*immunology
;
Vaccines, Synthetic/administration & dosage/genetics/immunology
;
Vaccines, Virus-Like Particle/administration & dosage/genetics/*immunology
;
Viral Proteins/genetics

Result Analysis
Print
Save
E-mail