1.Roles of substance P and transient receptor potential vanilloid 1 in neuralgia in rats with chronic nonbacterial prostatitis.
Ying-jia LIU ; Guo-hong SONG ; Chen ZHANG
National Journal of Andrology 2015;21(2):107-112
OBJECTIVETo study the possible mechanisms of chronic nonbacterial prostatitis (CNP) pain.
METHODSCNP models were established in male Wistar rats by the autoimmune method. Then the paw withdrawal threshold (PWT) was detected using the Von Frey filament, prostate pathological examination was conducted, the expressions of substance P (SP) and transient receptor potential vanilloid 1 (TRPV1) in the prostate tissue and L5-S2 spinal segments were determined by immunohistochemistry and their correlations were analyzed.
RESULTSCompared with the control group, the CNP model rats showed markedly decreased PWT (P < 0.05) and obvious inflammation in the prostate tissue, with significant differences in the scope of lesion and interstitial lymphocyte infiltration (P < 0.05). The expressions of SP and TRPV1 in the prostate and spinal cord dorsal horn L5-S2 were remarkably upregulated in the models as compared with the control rats (P < 0.05). However, the expression of SP in the prostate was not correlated with that in the spinal cord (r = 0.099, P = 0.338), nor was that of TRPV1 (r = 0.000, P = 0.5).
CONCLUSIONSP and TRPV1 were involved in the formation and persistence of pain in CNP rats through their upregulated expressions in the L5-S2 spinal segments.
Animals ; Lumbosacral Region ; Male ; Neuralgia ; metabolism ; physiopathology ; Pain ; metabolism ; physiopathology ; Prostate ; metabolism ; Prostatitis ; metabolism ; physiopathology ; Rats ; Rats, Wistar ; Spinal Cord ; metabolism ; Substance P ; metabolism ; TRPV Cation Channels ; metabolism
2.TWIK-Related Spinal Cord K+ Channel Expression Is Increased in the Spinal Dorsal Horn after Spinal Nerve Ligation.
Hee Youn HWANG ; Enji ZHANG ; Sangil PARK ; Woosuk CHUNG ; Sunyeul LEE ; Dong Woon KIM ; Youngkwon KO ; Wonhyung LEE
Yonsei Medical Journal 2015;56(5):1307-1315
PURPOSE: The TWIK-related spinal cord K+ channel (TRESK) has recently been discovered and plays an important role in nociceptor excitability in the pain pathway. Because there have been no reports on the TRESK expression or its function in the dorsal horn of the spinal cord in neuropathic pain, we analyzed TRESK expression in the spinal dorsal horn in a spinal nerve ligation (SNL) model. MATERIALS AND METHODS: We established a SNL mouse model by using the L5-6 spinal nerves ligation. We used real-time polymerase chain reaction and immunohistochemistry to investigate TRESK expression in the dorsal horn and L5 dorsal rot ganglion (DRG). RESULTS: The SNL group showed significantly higher expression of TRESK in the ipsilateral dorsal horn under pain, but low expression in L5 DRG. Double immunofluorescence staining revealed that immunoreactivity of TRESK was mostly restricted in neuronal cells, and that synapse markers GAD67 and VGlut2 appeared to be associated with TRESK expression. We were unable to find a significant association between TRESK and calcineurin by double immunofluorescence. CONCLUSION: TRESK in spinal cord neurons may contribute to the development of neuropathic pain following injury.
Animals
;
Disease Models, Animal
;
Hyperalgesia
;
Ligation
;
Male
;
Neuralgia/*metabolism/physiopathology
;
Neurons/metabolism
;
Nociceptors
;
Pain/metabolism/*physiopathology
;
Potassium Channels/*metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Spinal Cord Dorsal Horn/*metabolism
;
Spinal Nerves/*injuries
3.Neuropathic Pain Model of Peripheral Neuropathies Mediated by Mutations of Glycyl-tRNA Synthetase.
Seo Jin LEE ; Ah Jung SEO ; Byung Sun PARK ; Hyun Woo JO ; Youngbuhm HUH
Journal of Korean Medical Science 2014;29(8):1138-1144
Charcot-Marie-Tooth disease (CMT) is the most common inherited motor and sensory neuropathy. Previous studies have found that, according to CMT patients, neuropathic pain is an occasional symptom of CMT. However, neuropathic pain is not considered to be a significant symptom associated with CMT and, as a result, no studies have investigated the pathophysiology underlying neuropathic pain in this disorder. Thus, the first animal model of neuropathic pain was developed by our laboratory using an adenovirus vector system to study neuropathic pain in CMT. To this end, glycyl-tRNA synthetase (GARS) fusion proteins with a FLAG-tag (wild type [WT], L129P and G240R mutants) were expressed in spinal cord and dorsal root ganglion (DRG) neurons using adenovirus vectors. It is known that GARS mutants induce GARS axonopathies, including CMT type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V). Additionally, the morphological phenotypes of neuropathic pain in this animal model of GARS-induced pain were assessed using several possible markers of pain (Iba1, pERK1/2) or a marker of injured neurons (ATF3). These results suggest that this animal model of CMT using an adenovirus may provide information regarding CMT as well as a useful strategy for the treatment of neuropathic pain.
Animals
;
Charcot-Marie-Tooth Disease/*diagnosis/*physiopathology
;
*Disease Models, Animal
;
Glycine-tRNA Ligase/*genetics/metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Mutagenesis, Site-Directed
;
Mutation/genetics
;
Neuralgia/*diagnosis/*physiopathology
4.Neuropathic Pain Model of Peripheral Neuropathies Mediated by Mutations of Glycyl-tRNA Synthetase.
Seo Jin LEE ; Ah Jung SEO ; Byung Sun PARK ; Hyun Woo JO ; Youngbuhm HUH
Journal of Korean Medical Science 2014;29(8):1138-1144
Charcot-Marie-Tooth disease (CMT) is the most common inherited motor and sensory neuropathy. Previous studies have found that, according to CMT patients, neuropathic pain is an occasional symptom of CMT. However, neuropathic pain is not considered to be a significant symptom associated with CMT and, as a result, no studies have investigated the pathophysiology underlying neuropathic pain in this disorder. Thus, the first animal model of neuropathic pain was developed by our laboratory using an adenovirus vector system to study neuropathic pain in CMT. To this end, glycyl-tRNA synthetase (GARS) fusion proteins with a FLAG-tag (wild type [WT], L129P and G240R mutants) were expressed in spinal cord and dorsal root ganglion (DRG) neurons using adenovirus vectors. It is known that GARS mutants induce GARS axonopathies, including CMT type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V). Additionally, the morphological phenotypes of neuropathic pain in this animal model of GARS-induced pain were assessed using several possible markers of pain (Iba1, pERK1/2) or a marker of injured neurons (ATF3). These results suggest that this animal model of CMT using an adenovirus may provide information regarding CMT as well as a useful strategy for the treatment of neuropathic pain.
Animals
;
Charcot-Marie-Tooth Disease/*diagnosis/*physiopathology
;
*Disease Models, Animal
;
Glycine-tRNA Ligase/*genetics/metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Mutagenesis, Site-Directed
;
Mutation/genetics
;
Neuralgia/*diagnosis/*physiopathology
5.Effect of intrathecal sufentanil and protein kinase C inhibitor on pain threshold and the expression of NMDA receptor/ CGRP in spinal dorsal horn in rats with neuropathic pain.
Yichun WANG ; Qulian GUO ; Mingde WANG ; E WANG ; Wangyuan ZOU ; Jianghong ZHAO
Journal of Central South University(Medical Sciences) 2012;37(8):783-789
OBJECTIVE:
To investigate the effect of intrathecal sufentanil and protein kinase C inhibitor on pain threshold and the expression of N-methyl-D-aspartate receaptors (NMDAR)/calcitonin generelated peptide (CGRP) in spinal dorsal horn in rats with neuropathic pain.
METHODS:
Fifty-four healthy male Sprague-Dawley rats were randomly divided into 6 groups (9 in each group). The rats in the sham group(Group S) + spared nerve injury (SNI), SP+SNI, and P+SNI were intrathecally injected sufentanil (1 μg), sufentanil (1 μg) and chelerythrine chloride (11 μg), chelerythrine chloride (11 μg) followed by 10 μL normal saline once every day for 14 days postoperatively, respectively. Similarly, rats in the control group (Group C), the sham group (Group S), and SNI model group (Group SNI) were intrathecally injected 20 μL normal saline in the uniform interval. Pain behaviours were measured on Day 1 pre-surgery and on Day 1, 2, 7, and 14 after the intrathecal injection. The expressions of NMDAR and CGRP in the spinal dorsal horn of L5 segment were determined by immunohistochemistry on Day 2, 7, and 14 after the intrathecal injection.
RESULTS:
Compared with Group C and Group S, mechanical allodynia threshold in group SNI was decreased after the surgery (P<0.01), and expressions of NMDAR and CGRP immunoreactive soma in the spinal dorsal horn was significantly increased (P<0.01). Mechanical stimulation pain threshold was elevated in Group S+SNI, Group P+SNI, and Group SP+SNI compared with Group SNI (P<0.01), while expressions of NMDAR and CGRP immunoreactive soma in Group S+SNI, Group P +SNI, and Group SP+SNI were significantly decreased (P<0.05 or 0.01).
CONCLUSION
Intrathecal administration of sulfentanil and protein kinase C inhibitor can provide significant antinociception in rats with neuropathic pain and obviously inhibit the upregulation of NMDAR and CGRP expressions in the spinal dorsal horn of SNI rat models.
Animals
;
Benzophenanthridines
;
administration & dosage
;
Calcitonin Gene-Related Peptide
;
metabolism
;
Injections, Spinal
;
Male
;
Neuralgia
;
drug therapy
;
metabolism
;
physiopathology
;
Pain Measurement
;
Posterior Horn Cells
;
metabolism
;
Protein Kinase C
;
antagonists & inhibitors
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate
;
metabolism
;
Sufentanil
;
administration & dosage
6.Role of voltage-sodium channels in neuropathic pain.
Wen-Ting SHOU ; Shi-Hong ZHANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2011;40(2):217-221
Voltage-gated sodium channels are critical for the generation and conduction of nerve impulses. Recent studies show that in primary sensory neurons, the expression and dynamic regulation of several sodium channel subtypes play important roles in neuropathic pain. A number of SCN9A (encoding Nav1.7) gene point mutations are related with human genetic pain disorders. Transgenic and specific knockout techniques have revealed that Nav1.3, Nav1.8, Nav1.9 are important for the development and maintenance of neuropathic pain condition. Specific blockers of these sodium channels have been demonstrated to be effective in alleviating allodynia and hyperalgesia. Here we reviewed the roles of sodium channels in neuropathic pain, which may be applicable for the development of new drugs with enhanced efficacy for neuropathic pain treatment.
Animals
;
Humans
;
Neuralgia
;
genetics
;
metabolism
;
physiopathology
;
Neurons
;
metabolism
;
physiology
;
Sodium Channels
;
genetics
;
metabolism
;
physiology
7.Changes of GABA-activated currents in isolated dorsal root ganglion neurons in rats with neuropathic pain.
He ZHU ; Ke-tao MA ; Li LI ; Zhong-shuang ZHANG ; Jing LI ; Jun-qiang SI
Chinese Journal of Applied Physiology 2011;27(3):376-379
OBJECTIVETo investigate the changes of GABA-activated currents in isolated dorsal root ganglion neurons in rats with neuropathic pain.
METHODSThe neuropathic pain model was established by chronic constriction injury (CCI) 7 days before electrophysiological-recording. The rat DRG neurons were enzymatically dissociated. Whole-cell patch clamp technique was used to record GABA-activated currents. The changes of currents of injured side and opposite side were expected to compare with control group.
RESULTS(1) The currents of injured side of CCI group were notablely decreased compared with control group (GABA concentration, 0.1-1000 micromol/L). (2) By the contrast, opposite side currents of CCI group increased significantly compared with those in injured side and control group (GABA concentration, 0.01-1000 micromol/L).
CONCLUSIONThe data indicates that the chronic constriction injury change both the function of GABAA receptors of injury side and opposite side. The decrease of pre-synaptic inhibition of GABA may be the possible reason of neuropathic pain.
Animals ; Cell Separation ; Constriction ; Ganglia, Spinal ; pathology ; physiopathology ; Male ; Neuralgia ; etiology ; physiopathology ; Neurons ; metabolism ; physiology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Receptors, GABA-A ; metabolism ; physiology ; Sciatic Nerve ; injuries
8.Changes in voltage-gated potassium currents in the trigeminal neurons after a chronic constriction of infraorbital nerve..
Na LI ; Chao LI ; Juan FAN ; Xiao-Zhong JIANG ; Jin-Bao LI ; Xiao-Ming DENG ; Bei MA
Acta Physiologica Sinica 2009;61(1):72-78
The purpose of this study was to establish a model of trigeminal neuralgia (TN) through an approach from lower edge of cheekbone and to observe the functional changes in the voltage-gated potassium currents in the cultured trigeminal ganglion (TG) neurons. Thirty Sprague-Dawley male rats were divided into two groups, the sham-operated (sham) group and the operated group. The TN model was carried out by using a chronic constriction injury of the infraorbital nerve (ION-CCI) from lower edge of cheekbone. Peripheral pain threshold test and whole-cell patch clamp recording were used to determine the difference between sham and ION-CCI rats. The withdrawal threshold of whisker pad in operated side of ION-CCI rat was decreased significantly from 6 d after operation and then maintained until 21 d, with the lowest on the 15th day. The threshold of whisker pad in non-operated side of operated rats was also decreased significantly compared with that in the sham group. Delayed rectifier potassium current (I(K)) in cultured ION-CCI TG neurons was decreased significantly compared with that in the sham group. Transient outward potassium currents (I(A)) in both operated and non-operated sides of TG neurons from ION-CCI rats were also reduced significantly compared with that in the sham group. The present study provided a new method of ION-CCI. In this model, the decrease of I(A) and I(K) might contribute, at least in part, to the decrease in mechanical pain threshold of whisker pad and the subsequent hyperalgia.
Animals
;
Cells, Cultured
;
Constriction
;
Disease Models, Animal
;
Hyperalgesia
;
Male
;
Pain Threshold
;
Patch-Clamp Techniques
;
Potassium Channels
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Trigeminal Ganglion
;
metabolism
;
Trigeminal Neuralgia
;
physiopathology
;
Vibrissae
9.Involvement of hyperpolarization-activated, cyclic nucleotide-gated cation channels in dorsal root ganglion in neuropathic pain.
Acta Physiologica Sinica 2008;60(5):579-580
Dorsal root ganglion (DRG) neurons have peripheral terminals in skin, muscle, and other peripheral tissues, and central terminals in the spinal cord dorsal horn. Hyperpolarization-activated current (I(h)) of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are present in the DRG. The genes encoding HCN channels have four subtypes named HCN1 to HCN4. HCN channels are permeable to both K(+) and Na(+). They underlie the depolarization that modulates the rhythmic generations of action potentials (APs), contribute to the resting membrane potential, and modify the waveform of propagated synaptic and generator potentials. Neuropathic pain is characterized by spontaneous pain, hyperalgesia and allodynia. After spinal nerve injury, the cell bodies of the primary sensory neurons in segmental DRG become hyperexcitable, characterized for some neurons by the presence of spontaneous firing (or ectopic discharge). In the following, we summarize our observations on the role of HCN channels in DRG neurons in neuropathic pain. 1 HCN subtypes and I(h) in DRG neurons Immunohistochemical staining revealed a subgroup of neurons in the DRG that were stained with rabbit polyclonal antibodies specific for HCN1, 2, 3 and 4. The most prominently expressed HCN subtype was HCN1. HCN1-positive cells in DRG were medium to large in size and doubly labeled with neurofilament-200 (NF-200), and were not labeled with isolectin B4 (IB4), a C fiber marker. In contrast, HCN2, 3 or 4 was expressed in all DRG neurons at a lower level. HCN4 was confined to small neurons. DRG neurons expressed I(h). When membrane was hyperpolarized, the channel was activated, mediating a slowly activated, inward current. I(h) was distributed mainly in large and medium-sized DRG neurons. 2 Changes in expression of HCN in DRG after spinal nerve ligation Western blotting was used to detect the changes in the expression of HCN subtypes in the DRG after spinal nerve ligation. HCN1 mRNA and protein were reduced in the DRG whose spinal nerve had been ligated. HCN1 expression was decreased to the lowest level at day 14 and restored at day 28 after spinal nerve ligation. HCN2 mRNA and medium molecular weight protein was also decreased in spinal-nerve ligated DRG. HCN3 and 4 in the same ganglion remained unchanged as evidenced by immunohistochemical staining, until day 28 when they became significantly decreased. HCN4 mRNA in DRG did not change, and protein expression slightly increased. Interestingly, abundant axonal accumulation of HCN channel protein at the injured sites in chronic constriction injury (CCI) rats. Electron immunomicroscopy showed strong positive immunolabeling on the axolemma of myelinated thick axons. 3 Role of I(h) in neuronal excitability and ectopic discharges after spinal nerve ligation ZD7288, a specific I(h) blocker, inhibited I(h) in a time- and concentration-dependent manner. With patch-clamp recording on acutely isolated DRG neurons, it was found that ZD7288 perfusion resulted in a decrease of both I(h) activity and the activation time constant. ZD7288 decreased the number of repetitive APs and caused an increase in AP rise time, accompanied by a small hyperpolarization of the membrane resting potential. The results demonstrated that I(h) was involved in AP firing, and possessed the physiological functions to facilitate neuronal excitability and ectopic firing. Extracellular electrophysiological recording from dorsal root fibers associated with the spinal nerve-ligated ganglion revealed three different firing patterns of ectopic discharges: tonic or regular, bursting and irregular. The average frequency of ectopic discharges and the proportions of active filaments also changed rapidly, both parameters reaching a peak within 24 h then declining gradually in the following days. It was also found that proportions of three different firing patterns changed dynamically over time. The tonic and bursting types were dominant patterns in the first 24 h, while the irregular became the only pattern at day 14. We found that all three firing patterns (tonic, bursting and irregular) were dose- and time-dependently inhibited by local application of ZD7288 to DRG. The rate of suppression was negatively related to the frequency of firing prior to the application of ZD7288. We also found that, while the tonic firing pattern was gradually transformed to bursting type by application of 100 mumol/L ZD7288, it could be transformed to integer multiples firing by 1000 mumol/L ZD7288. 4 Effects of administration of ZD7288 on mechanical allodynia after spinal nerve ligation or CCI After spinal nerve ligation, i.t. injection of 30 mug ZD7288 significantly increased the 50% paw withdrawal threshold, ipsilateral to the ligated nerve. ZD7288 had no effect if the dose was lower than 15 mug, but resulted in motor deficits if the dose was higher than 60 mug. ZD7288 produced much better effects in the early stage (5 or 14 days after spinal nerve ligation) than that in the late stage (28 days after spinal nerve ligation). In CCI rats, ZD7288 application to the injured sited also significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia was inhibited. In conclusion, these results demonstrated that I(h) participated in the development and maintenance of peripheral sensitivity associated with neuropathic pain and that it is a potential target for the design of novel analgesics in the future.
Action Potentials
;
Animals
;
Cyclic Nucleotide-Gated Cation Channels
;
metabolism
;
Ganglia, Spinal
;
physiopathology
;
Hyperalgesia
;
physiopathology
;
Membrane Potentials
;
Nerve Fibers
;
pathology
;
Neuralgia
;
physiopathology
;
Neurons, Afferent
;
pathology
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Nerves
;
pathology
10.Evaluation of NR2B peptide as subunit vaccines against experimental neuropathic pain.
Gong-Ming WANG ; Yu-Ke TIAN ; Jian-Ping CHEN ; Xu-Bi TIAN ; Feng GAO ; Hui YANG ; Ke AN ; Guo-Ping MA
Chinese Medical Journal 2007;120(8):643-647
BACKGROUNDNR2B containing N-methyl-D-aspartate (NMDA) receptor plays an important role in the facilitation and maintenance of neuropathic pain. The discrete distribution of NR2B subunit in the central nervous system (CNS) may support reduced side effects of agents that act selectively at this site. Therefore, we investigated the hypothesis that a humoral autoimmune response targeting the NR2B subunit of NMDA receptor relieves pain like behaviours produced by peripheral injury.
METHODSRats were immunized subcutaneously with NR2B-Keyhole Limpet Hemocyanin (NR2B-KLH) three times at two-week intervals. NR2B specific IgG titres in sera and cerebrospinal fluid were determined by indirect ELISA. Seven days after the third immunization, 2 of the 3 terminal branches of the sciatic nerve (tibial and common peroneal nerves) were tightly ligated. Behavioural testing was carried out on every other day after surgery, until 7 days after surgery. The lumbar spinal cord (L4-6) was removed on day 7 after ligation. The expression of NR2B protein in the lumbar spinal cord was determined using Western blotting.
RESULTSAfter the second vaccination, NR2B specific IgG in sera was detected to be > 0.5 microg/ml in six of nine rats. After the third vaccination, all the immunized rats had > 2.2 microg/ml. Titres of NR2B specific IgG in sera peaked 42 days post initial immunization and persisted for over 70 days. No NR2B specific IgG was detected in sera from PBS or KLH group. The behavioural thresholds in NR2B group were significantly higher than those in PBS and KLH groups on day 7 after ligation. NR2B specific IgG in CSF in NR2B group could not be detected on day 1 before spinal dissection; but could be detected on day 7 after surgery. The expression of NR2B protein in group NR2B was significantly lower than in PBS and KLH groups on day 7 after surgery.
CONCLUSIONThe NR2B peptide could be used as a vaccine against neuropathic pain, which could be associated with reduction of NR2B protein in the lumbar spinal cord.
Adjuvants, Immunologic ; Animals ; Blotting, Western ; Disease Models, Animal ; Enzyme-Linked Immunosorbent Assay ; Female ; Hemocyanins ; immunology ; Immunoglobulin G ; immunology ; Neuralgia ; immunology ; physiopathology ; prevention & control ; Pain Measurement ; Rats ; Rats, Sprague-Dawley ; Receptors, N-Methyl-D-Aspartate ; immunology ; metabolism ; Recombinant Fusion Proteins ; administration & dosage ; immunology ; Spinal Cord ; drug effects ; metabolism ; physiopathology ; Time Factors ; Vaccines ; administration & dosage ; immunology

Result Analysis
Print
Save
E-mail