1.Effects of Jisuikang on Nogo-NgR gene expression in spinal cord rats with injury.
Wu-Lin YOU ; Ya-Feng ZHANG ; Jian-Feng CHEN ; Heng YIN ; Jun-Feng YANG ; Jian-Wei WANG
China Journal of Orthopaedics and Traumatology 2015;28(3):235-239
OBJECTIVETo study the effects of Jisuikang (Chinese characters) on Nogo-NgR gene expression, and to explore the protective effects and mechanism of Jisuikang (Chinese characters) on spinal cord injury in rats.
METHODSOne hundred eighty female rats were randomly assigned to 6 groups(30 rats per group). Sham group: T10 lamina was resected only and spinal cord was untreated. Model group: spine cord injury (SCI) was created with a modified impinger of Allen's by impacting on the T10 spinal cord. Prednisolone group: Prednisolone (0.06 g/kg) was given by intragastric administration at a time interval of 24 hours after operation. The Jisuikang (Chinese characters) high, moderate and low dose groups: Jisuikang (Chinese characters) was supplied with different dose (50 g/kg, 25 g/kg, 12.5 g/kg) by intragastric administration in rats after operation,for the first time at 30 min after surgery. Animals were killed 3, 7, 14 days after surgery. The expression levels of Nogo-A and NgR were observed by Western Blot and Real-time PCR.
RESULTSThe expression of Nogo-A and NgR was at the basic level at all time points in sham group. Compared with model group, the protein expression levels of Nogo-A and NgR in sham, prednisolone, Jisuikang (Chinese characters) moderate dose groups were statistically significant at all time points (P < 0.05). No difference was found in Jisuikang (Chinese characters) high and low dose groups (P > 0.05). Three days after surgery, the mRNA levels of Nogo-A and NgR in treatment group were significantly lower than that in model group (P < 0.01); 7 days after surgery,Nogo-A and NgR mRNA expression were dramatically upregulated and peaked; 14 days after operation, the expression was decreased, but still significantly higher than that in other treatment groups (P < 0.01). Prednisolone and Jisuikang (Chinese characters) moderate dose groups showed the most significant effects among all groups,but there was no statistically significant difference between two groups (P > 0.05).
CONCLUSIONThe decoction Jisuikang (Chinese characters) can promote the nerve cell regeneration by regulating Nogo-A and NgR gene expression, activating Nogo- NgR signaling pathways after acute spinal cord injury.
Animals ; Female ; GPI-Linked Proteins ; analysis ; genetics ; physiology ; Medicine, Chinese Traditional ; Myelin Proteins ; analysis ; genetics ; physiology ; Nerve Regeneration ; drug effects ; Nogo Proteins ; Nogo Receptor 1 ; Rats ; Rats, Sprague-Dawley ; Receptors, Cell Surface ; analysis ; genetics ; physiology ; Signal Transduction ; drug effects ; Spinal Cord Injuries ; drug therapy ; metabolism
2.Effect of Draconis Sanguis-containing serum on NGF, BDNF, CNTF, LNGFR, TrkA, GDNF, GAP-43 and NF-H expressions in Schwann cells.
Jin GU ; Xin-rong HE ; Ya-liang HAN
China Journal of Chinese Materia Medica 2015;40(7):1392-1395
OBJECTIVETo observe the effect of Draconis Sanguis-containing serum on the expressions of NGF, BDNF, CNTF, LNG-FR, TrkA, GDNF, GAP-43 and NF-H in Schwann cells, and investigate the possible mechanism of Draconis Sanguis to promote peripheral nerve regeneration.
METHODSD rats were randomly divided into 2 groups: the Draconis Sanguis group (orally administered with Draconis Sanguis-containing balm solution) and the blank group (equivoluminal balm) to prepare Draconis Sanguis-containing serum and blank control serum. Schwann cells were extracted from double sciatic nerves of three-day-old SD rats, divided into 2 groups: the Draconis Sanguis group and the blank control group, and respectively cultured with 10% Draconis Sanguis-containing serum or blank control serum. The mRNA expressions of NGF, BDNF, CNTF and other genes in Schwann cells were measured by RT-PCR analysis 48 hours later.
RESULTMost of the Schwann cells were bipolar spindle and arranged shoulder to shoulder or end to end under the microscope and identified to be positive with the immunocytochemical method. To compare with the blank group, mRNA expressions of NGF, LNGFR, GDNF and GAP-43 significantly increased (P < 0.01). Whereas that of BDNF decreased significantly (P < 0.05), and so did that of TrkA, CNTF (P < 0.01), with no remarkable difference in NF-H-mRNA.
CONCLUSIONTraditional Chinese medicine Draconis Sanguis may show effect in nerve regeneration by up-regulating mRNA expressions of NGF, LNGFR, GDNF and GAP-43 and down-regulating mRNA expressions of TrkA, BDNF and CNTF.
Animals ; Arecaceae ; chemistry ; Brain-Derived Neurotrophic Factor ; genetics ; metabolism ; Cells, Cultured ; Ciliary Neurotrophic Factor ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; GAP-43 Protein ; genetics ; metabolism ; Gene Expression ; drug effects ; Glial Cell Line-Derived Neurotrophic Factor ; genetics ; metabolism ; Male ; Nerve Growth Factor ; genetics ; metabolism ; Nerve Regeneration ; drug effects ; Neurofilament Proteins ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor, trkA ; genetics ; metabolism ; Schwann Cells ; drug effects ; physiology ; Serum ; chemistry
3.Effect of Macrophage Migration Inhibitory Factor on Corneal Sensitivity after Laser In Situ Keratomileusis in Rabbit.
Joon Young HYON ; Stacey HOSE ; Celine GONGORA ; Debasish SINHA ; Terrence O'BRIEN
Korean Journal of Ophthalmology 2014;28(2):170-176
PURPOSE: To investigate the effect of macrophage migration inhibitory factor (MIF) on corneal sensitivity after laser in situ keratomileusis (LASIK) surgery. METHODS: New Zealand white rabbits were used in this study. A hinged corneal flap (160-microm thick) was created with a microkeratome, and -3.0 diopter excimer laser ablation was performed. Expressions of MIF mRNA in the corneal epithelial cells and surrounding inflammatory cells were analyzed using reverse transcription polymerase chain reaction at 48 hours after LASIK. After LASIK surgery, the rabbits were topically given either 1) a balanced salt solution (BSS), 2) MIF (100 ng/mL) alone, or 3) a combination of nerve growth factor (NGF, 100 ug/mL), neurotrophine-3 (NT-3, 100 ng/mL), interleukin-6 (IL-6, 5 ng/mL), and leukemia inhibitory factor (LIF, 5 ng/mL) four times a day for three days. Preoperative and postoperative corneal sensitivity at two weeks and at 10 weeks were assessed using the Cochet-Bonnet esthesiometer. RESULTS: Expression of MIF mRNA was 2.5-fold upregulated in the corneal epithelium and 1.5-fold upregulated in the surrounding inflammatory cells as compared with the control eyes. Preoperative baseline corneal sensitivity was 40.56 +/- 2.36 mm. At two weeks after LASIK, corneal sensitivity was 9.17 +/- 5.57 mm in the BSS treated group, 21.92 +/- 2.44 mm in the MIF treated group, and 22.42 +/- 1.59 mm in the neuronal growth factors-treated group (MIF vs. BSS, p < 0.0001; neuronal growth factors vs. BSS, p < 0.0001; MIF vs. neuronal growth factors, p = 0.815). At 10 weeks after LASIK, corneal sensitivity was 15.00 +/- 9.65, 35.00 +/- 5.48, and 29.58 +/- 4.31 mm respectively (MIF vs. BSS, p = 0.0001; neuronal growth factors vs. BSS, p = 0.002; MIF vs. neuronal growth factors, p = 0.192). Treatment with MIF alone could achieve as much of an effect on recovery of corneal sensation as treatment with combination of NGF, NT-3, IL-6, and LIF. CONCLUSIONS: Topically administered MIF plays a significant role in the early recovery of corneal sensitivity after LASIK in the experimental animal model.
Animals
;
Epithelium, Corneal/*drug effects/innervation/physiology
;
Female
;
Humans
;
Interleukin-6/pharmacology
;
Keratomileusis, Laser In Situ/*methods
;
Leukemia Inhibitory Factor/pharmacology
;
Macrophage Migration-Inhibitory Factors/genetics/*pharmacology
;
Models, Animal
;
Nerve Growth Factor/pharmacology
;
Nerve Regeneration/*drug effects/physiology
;
Neurotrophin 3/pharmacology
;
RNA, Messenger/metabolism
;
Rabbits
;
Recovery of Function/*drug effects/physiology
;
Sensation/*drug effects/physiology
5.Phenotype-based primary screening for drugs promoting neuronal subtype differentiation in embryonic stem cells with light microscope.
Yi-ning GAO ; Dan-ying WANG ; Zong-fu PAN ; Yu-qin MEI ; Zhi-qiang WANG ; Dan-yan ZHU ; Yi-jia LOU
Journal of Zhejiang University. Medical sciences 2012;41(4):373-380
OBJECTIVETo set up a platform for phenotype-based primary screening of drug candidates promoting neuronal subtype differentiation in embryonic stem cells (ES) with light microscope.
METHODSHanging drop culture 4-/4+ method was employed to harvest the cells around embryoid body (EB) at differentiation endpoint. Morphological evaluation for neuron-like cells was performed with light microscope. Axons for more than three times of the length of the cell body were considered as neuron-like cells. The compound(s) that promote neuron-like cells was further evaluated. Icariin (ICA, 10(-6)mol/L) and Isobavachin (IBA, 10(-7)mol/L) were selected to screen the differentiation-promoting activity on ES cells. Immunofluorescence staining with specific antibodies (ChAT, GABA) was used to evaluate the neuron subtypes.
RESULTSThe cells treated with IBA showed neuron-like phenotype, but the cells treated with ICA did not exhibit the morphological changes. ES cells treated with IBA was further confirmed to be cholinergic and GABAergic neurons.
CONCLUSIONPhenotypic screening with light microscope for molecules promoting neuronal differentiation is an effective method with advantages of less labor and material consuming and time saving, and false-positive results derived from immunofluorescence can be avoided. The method confirms that IBA is able to facilitate ES cells differentiating into neuronal cells, including cholinergic neurons and GABAergic neurons.
Animals ; Cell Differentiation ; drug effects ; physiology ; Cell Line ; Drug Evaluation, Preclinical ; methods ; Embryoid Bodies ; cytology ; Embryonic Stem Cells ; cytology ; Mice ; Nerve Regeneration ; drug effects ; Neurons ; cytology ; Phenotype
6.Review of study on peripheral nerve regeneration promoted by traditional Chinese medicines.
China Journal of Chinese Materia Medica 2011;36(1):77-80
Peripheral nerve impairment is a common complication in surgery, clinical researchers always do nerve sutrure using microsurgical technique and adjuvant treatment to improve peripheral nerve regeneration. Western medicine used usually adjuvant drugs, such as neurotrophic factors,are limited by their defects in clinical application. Traditional Chinese medicines (TCMs) classifies peripheral nerve impair as flaccidity Zheng and arthromyodynia, and considers that it is the result of stagnant blood block in the meridians and vessels, deficient of Qi and blood and disuse of bones and muscles. So, drugs usually have the function of invigorating vital energy, activating blood circulation and dredging collaterals. Mono-drugs include astragalus, Salvia miltiorrhiza, Astragali Radix, Epimedii Folium and so on. Extracts of TCMs have Ginkgo Folium, Cervi Cornu Pantotrichum, Achyranthis Bidentatae Radix, and so on. To be ready for further study and development, TCMs which can promote the peripheral nerve regeneration were reviewed by the literatures of the latest years.
Animals
;
Drugs, Chinese Herbal
;
pharmacology
;
Humans
;
Nerve Growth Factors
;
pharmacology
;
Nerve Regeneration
;
drug effects
;
Peripheral Nerves
;
drug effects
;
physiology
7.Research on the mechanism of Zuogui Pill and Yougui Pill in promoting axonal regeneration in model rats of autoimmune encephalomyelitis.
Lei WANG ; Hui ZHAO ; Yong-ping FAN ; Hai-yang GONG ; Ming LI ; Fang QI ; Yan LIU
Chinese journal of integrative medicine 2010;16(2):167-172
OBJECTIVETo study the molecular mechanism of Zuogui Pill (ZGP) and Yougui Pill (YGP) on axonal regeneration in rats with experimental autoimmune encephalomyelitis (EAE).
METHODSEAE rat model was established by bilateral rear pedes subcutaneous injection of antigen made by mixing myelin basic protein (MBP) and complete Freud's adjuvant (CFA) in the volume ratio of 1:1. The pathological changes of axonal injury and regeneration in the brain and the spinal cord were observed on the 14th (the acute stage) and the 28th day (the remission stage) after modeling, with hematoxylin-eosin (HE) staining, silver stain, and immunohistochemical staining. The rats treated with prednisone acetate were taken as controls.
RESULTSObservation under the light microscope with HE staining showed a sleeve-like change in rats' cerebrospinal parenchyma with inflammatory cell infiltration around the small vessels and neuronic denaturation, while silver staining showed excessive tumefaction and abscission of axon, and immunohistochemical analysis showed decreasing of nerve growth factor (NGF) expression at the acute stage of EAE, which was even more remarkable at the remission stage, showing significant difference as compared with the normal control (P<0.05). And the expressions of Nogo A, an axon growth inhibitor, and its receptor (Nogo-66 receptor, Ng R) were significantly higher than those in the normal control at the acute stage (P<0.01). However, after the intervention of ZGP and YGP, the pathological changes and axon damage in rats' brain and spinal cord were much more alleviated, and the NGF expression was significantly higher than that in the model group at the acute stage (P<0.05). The expression of NGF was even stronger during the remission stage, and a better effect was shown by YGP. As for Nogo A and Ng R expressions, they were significantly lower than those in the model group at the acute stage (P<0.05), but a better effect was shown by ZGP.
CONCLUSIONSZGP and YGP can prevent axonal injury and promote the axonal regeneration in rats of EAE, and the possible mechanism is to increase the expression of NGF and reduce the expression of Nogo A and its receptor. However, some differences are observed between the two Chinese preparations in their acting times and points, which provides a certain basis for revealing the modern connotation of the Chinese medicine theory on tonifying Shen ()-yin and Shen-yang.
Animals ; Axons ; drug effects ; metabolism ; pathology ; physiology ; Brain ; drug effects ; metabolism ; pathology ; Disease Models, Animal ; Drug Evaluation, Preclinical ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; Encephalomyelitis, Autoimmune, Experimental ; drug therapy ; metabolism ; pathology ; GPI-Linked Proteins ; Male ; Myelin Proteins ; metabolism ; Nerve Growth Factor ; metabolism ; Nerve Regeneration ; drug effects ; Nogo Proteins ; Nogo Receptor 1 ; Rats ; Rats, Inbred Lew ; Receptors, Cell Surface ; Receptors, Peptide ; metabolism ; Research ; Signal Transduction ; drug effects ; Tablets
8.Kallikrein-binding protein promotes axonal regeneration and protect rat retinal ganglion cells following optic nerve injury.
Shun-xiang JIN ; Yong ZENG ; Jing WAN ; Kun WAN ; Yuan-yuan LI ; Li-yan LI ; Ting-hua WANG ; Zhong-tang FENG ; Yan LI
Journal of Southern Medical University 2010;30(4):738-741
OBJECTIVETo explore the effect of kallikrein-binding protein (KPB) in protecting retinal ganglion cells (RGCs) and promoting axonal regeneration following optical nerve injury in rats.
METHODSCrush injury of the optic nerve at 0.5-1.0 mm from the eyeball was induced in rats, which received subsequent KBP injection into the vitreous cavity (experimental group) and PBS injection (control group). At 7, 14 and 21 days after the injury, the rats were sacrificed and frozen sections of the eyeball were prepared to observe the structure and thickness of the retina and count the number of survival RGCs with HE staining. The optic nerves were collected for Western blotting to assess the effect of KBP on the RGCs and axonal regeneration.
RESULTSRGC counts and retinal thickness showed significant differences between the two groups. Western blotting also demonstrated a significant difference in the expression of the nerve regeneration marker protein GAP-43 between the two groups.
CONCLUSIONKBP offers protection on RGCs and promotes regeneration of the optic nerve axons after optic nerve injury in rats.
Animals ; Axons ; physiology ; Female ; GAP-43 Protein ; metabolism ; Nerve Regeneration ; drug effects ; physiology ; Neuroprotective Agents ; pharmacology ; Optic Nerve Injuries ; drug therapy ; Rats ; Rats, Sprague-Dawley ; Retinal Ganglion Cells ; drug effects ; physiology ; Serpins ; pharmacology
9.Experimental study of electrophysiologic effects of regenerative nerve fibres affected by control releasing FK506.
Qiang LI ; Tu-Gang SHEN ; Ya-Min WU ; Ji LI ; Gang WANG
China Journal of Orthopaedics and Traumatology 2010;23(11):841-844
OBJECTIVETo discuss the electrophysiologic effects of regenerative nerve fibres affected by control releasing of FK506.
METHODSFrom Mar. to Sep. in 2008, the body weigh of 32 Sprague-Dawley rats which was 200 to 250 g,anesthesia was performed with an intraperitoneal injection of 30 mg/kg 1% continal. The sciatic nerve was transected in each rat by the excision of a 10 mm gap just proximal to the trifurcation of the nerve. The 10 mm gap of sciatic nerve had been bridged with the new double channel nerve conduit of fusiform shape, which were randomly divided into two groups basing on the different drug in the channel, each group contained 16 animals. In group A,100 microl of chitin for medical use was injected into the conduit,in group B the two branches of the conduit respectively contained 100 microl of the chitin and 10 microl FK506 (group B2) or physiologic saline (group B1). At 8 and 12 week after operation, the morphology in regenerative nerve and electrophysiologic effects by detect compound muscle active potential (CMAP) and cortical somatosensory evoked potential (CSEP) were evaluated.
RESULTSThere were not significant differences of the regenerative nerve fibres between two channels in group A, but in group B2, the number of the regenerative fibres was much more than that in group B1. The latency of CMAP and CSEP in group B2 was shorter than that in group B1. But its amplitude was higher. There were highly significant difference between the groups (P < 0.01).
CONCLUSIONThe electrophysiologic effects of regenerative nerve fibres can be significantly promoted by FK506, which provide theory base for immunosuppressive treatment of peripheral nerve.
Animals ; Chitin ; administration & dosage ; Delayed-Action Preparations ; Female ; Immunosuppressive Agents ; administration & dosage ; pharmacology ; Male ; Nerve Fibers ; drug effects ; physiology ; Nerve Regeneration ; Rats ; Rats, Sprague-Dawley ; Tacrolimus ; administration & dosage ; pharmacology
10.Nidogen Plays a Role in the Regenerative Axon Growth of Adult Sensory Neurons Through Schwann Cells.
Hyun Kyoung LEE ; In Ae SEO ; Duk Joon SUH ; Hwan Tae PARK
Journal of Korean Medical Science 2009;24(4):654-659
We previously reported that nidogen is an extracellular matrix protein regulating Schwann cell proliferation and migration. Since Schwann cells play a critical role in peripheral nerve regeneration, nidogen may play a role in it via regulation of Schwann cells. Here, we demonstrate direct evidence that nidogen induces elongation of regenerative axon growth of adult sensory neurons, and that the effect is Schwann cell dependent. Continuous infusion of recombinant ectodomain of tumor endothelial marker 7, which specifically blocks nidogen function in Schwann cells, suppressed regenerative neurite growth in a sciatic nerve axotomy model. Taken together, it is likely that nidogen is required for proper regeneration of peripheral nerves after injury.
Animals
;
Axotomy
;
Cell Movement
;
Cell Proliferation
;
Male
;
Membrane Glycoproteins/*physiology
;
Membrane Proteins/pharmacology
;
*Nerve Regeneration
;
Nerve Tissue Proteins/pharmacology
;
Neurites/drug effects/*physiology/ultrastructure
;
Rats
;
Rats, Sprague-Dawley
;
Recombinant Proteins/pharmacology
;
Schwann Cells/cytology/*physiology
;
Sensory Receptor Cells/*physiology

Result Analysis
Print
Save
E-mail