1.MASH1 induces neuron transdifferentiation of adrenal medulla chromaffin cells.
Emin PENG ; Chengping HU ; Juntao FENG ; Ruoxi HE
Journal of Central South University(Medical Sciences) 2023;48(4):526-537
OBJECTIVES:
Nerve growth factor (NGF) induces neuron transdifferentiation of adrenal medulla chromaffin cells (AMCCs) and consequently downregulates the secretion of epinephrine (EPI), which may be involved in the pathogenesis of bronchial asthma. Mammalian achaete scute-homologous 1 (MASH1), a key regulator of neurogenesis in the nervous system, has been proved to be elevated in AMCCs with neuron transdifferentiation in vivo. This study aims to explore the role of MASH1 in the process of neuron transdifferentiation of AMCCs and the mechanisms.
METHODS:
Rat AMCCs were isolated and cultured. AMCCs were transfected with siMASH1 or MASH1 overexpression plasmid, then were stimulated with NGF and/or dexamethasone, PD98059 (a MAPK kinase-1 inhibitor) for 48 hours. Morphological changes were observed using light and electron microscope. Phenylethanolamine-N-methyltransferase (PNMT, the key enzyme for epinephrine synthesis) and tyrosine hydroxylase were detected by immunofluorescence. Western blotting was used to test the protein levels of PNMT, MASH1, peripherin (neuronal markers), extracellular regulated protein kinases (ERK), phosphorylated extracellular regulated protein kinases (pERK), and JMJD3. Real-time RT-PCR was applied to analyze the mRNA levels of MASH1 and JMJD3. EPI levels in the cellular supernatant were measured using ELISA.
RESULTS:
Cells with both tyrosine hydroxylase and PNMT positive by immunofluorescence were proved to be AMCCs. Exposure to NGF, AMCCs exhibited neurite-like processes concomitant with increases in pERK/ERK, peripherin, and MASH1 levels (all P<0.05). Additionally, impairment of endocrine phenotype was proved by a signifcant decrease in the PNMT level and the secretion of EPI from AMCCs (all P<0.01). MASH1 interference reversed the effect of NGF, causing increases in the levels of PNMT and EPI, conversely reduced the peripherin level and cell processes (all P<0.01). MASH1 overexpression significantly increased the number of cell processes and peripherin level, while decreased the levels of PNMT and EPI (all P<0.01). Compared with the NGF group, the levels of MASH1, JMJD3 protein and mRNA in AMCCs in the NGF+PD98059 group were decreased (all P<0.05). After treatment with PD98059 and dexamethasone, the effect of NGF on promoting the transdifferentiation of AMCCs was inhibited, and the number of cell processes and EPI levels were decreased (both P<0.05). In addition, the activity of the pERK/MASH1 pathway activated by NGF was also inhibited.
CONCLUSIONS
MASH1 is the key factor in neuron transdifferentiation of AMCCs. NGF-induced neuron transdifferentiation is probably mediated via pERK/MASH1 signaling.
Animals
;
Rats
;
Adrenal Medulla
;
Cell Transdifferentiation
;
Chromaffin Cells
;
Dexamethasone
;
Epinephrine/pharmacology*
;
Mammals
;
Nerve Growth Factor
;
Neurons
;
Peripherins
;
Protein Kinases
;
Tyrosine 3-Monooxygenase
2.Antidepressant mechanism of Shenling Kaixin Granules based on BDNF/TrkB/CREB pathway.
Yan XU ; Dong-Guang LIU ; Ting-Bo NING ; Jian-Guo ZHU ; Ru YAO ; Xue MENG ; Jing-Chun YAO ; Wen-Xue ZHAO
China Journal of Chinese Materia Medica 2023;48(8):2184-2192
To investigate the antidepressant mechanism of Shenling Kaixin Granules(SLKX) in treating chronic unpredictable mild stress(CUMS) model rats. Ninety male SD rats were randomly divided into control group, model group, Shugan Jieyu Capsules(110 mg·kg~(-1)) group and SLKX low-(90 mg·kg~(-1)), medium-(180 mg·kg~(-1)), and high-dose(360 mg·kg~(-1)) groups. Depression rat model was replicated by CUMS method. After treatment, the behavioral changes of rats were evaluated by sugar preference, open field, elevated cross maze and forced swimming experiments. The contents of interleukin 1 beta(IL-1β), tumor necrosis factor α(TNF-α), brain-derived neurotrophic factor(BDNF) and 5-hydroxytryptamine(5-HT) in serum were determined by enzyme linked immunosorbent assay(ELISA), and the activities of superoxide dismutase(SOD) and catalase(CAT) in hippocampal CA1 region were also detected. Pathological changes in hippocampal CA1 region were detected by hematoxylin-eosin(HE) staining, and Western blot was used to determine the expression of nerve growth factor(NGF), BDNF, phospho-tyrosine kinase receptor(p-TrkB)/TrkB, phospho-cAMP-response element binding protein(p-CREB)/CREB, nuclear factor E2 related factor 2(Nrf2), heme oxygenase 1(HO-1), B-cell lymphoma-2(Bcl-2)/Bcl-2 associated X protein(Bax) and caspase-3 in hippocampal CA1 region. RESULTS:: showed that compared with the control group, the model group had decreased sugar preference, reduced number of entries and time spent in the center of open field and shortened total distance of movement, reduced number of entries and proportion of time spent in open arm, and increased number and time of immobility in forced swimming experiment. Additionally, the serum contents of IL-1β and TNF-α and the expression of caspase-3 were higher, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1 and Bcl-2/Bax, and the Nrf2 nuclear translocation were lower in model group than in control group. Compared with the conditions in model group, the sugar preference, the number of entries and time spent in the center of open, total distance of movement, and the number of entries and proportion of time spent in open arm in treatment groups were increased while the number and time of immobility in forced swimming experiment were decreased; the serum contents of IL-1β and TNF-α and the expression of caspase-3 were down regulated, while the contents of BDNF and 5-HT, the activities of SOD and CAT in hippocampal CA1 region, the expressions of NGF, BDNF, p-TrkB/TrkB, p-CREB/CREB, HO-1, Bcl-2/Bax, and Nrf2 nuclear translocation were enhanced. In conclusion, SLKX might regulate the Nrf2 nucleus translocation by activating BDNF/TrkB/CREB pathway, lower oxidative stress damage in hippocampus, inhibit caspase-3 activity, and reduce apoptosis of hippocampal nerve cells, thereby playing an antidepressant role.
Rats
;
Male
;
Animals
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Nerve Growth Factor/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Signal Transduction
;
Tumor Necrosis Factor-alpha/metabolism*
;
Serotonin/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Rats, Sprague-Dawley
;
Antidepressive Agents/pharmacology*
;
Hippocampus/metabolism*
;
Superoxide Dismutase/metabolism*
;
Sugars/pharmacology*
;
Depression/genetics*
;
Stress, Psychological/metabolism*
3.Effects of Nerve Growth Factor on Cardiac Fibroblasts Proliferation, Cell Cycle, Migration, and Myofibroblast Transformation.
Chinese Medical Journal 2018;131(7):813-817
BackgroundRecent research indicates that nerve growth factor (NGF) promotes cardiac repair following myocardial infarction by promoting angiogenesis and cardiomyocyte survival. The purpose of this study was to investigate the effects of NGF on cardiac fibroblasts (CFs) proliferation, cell cycle, migration, and myofibroblast transformation in vitro.
MethodsCFs were obtained from ventricles of neonatal Sprague-Dawley rats and incubated with various concentrations of NGF (0, 0.01, 0.1, 1, 10, and 100 ng/ml; 0 ng/ml was designated as the control group). Cell proliferation and cell cycle of the CFs were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry (FCM), respectively. A cell scratch wound model and transwell were carried out to observe effects of NGF on migration of CFs after 24 h of culture. Real-time polymerase chain reaction (RT-PCR) and Western blotting were used to measure α-smooth muscle actin (α-SMA) at mRNA and protein levels after CFs were incubated with various concentrations of NGF.
ResultsExpression of α-SMA measured by RT-PCR and Western blotting significantly increased in the 1 and 10 ng/ml NGF groups (P < 0.05). Absorbance values of CFs showed that NGF did not influence the proliferation of CFs (The Avalues were 0.178 ± 0.038, 0.182 ± 0.011, 0.189 ± 0.005, 0.178 ± 0.010, 0.185 ± 0.025, and 0.177 ± 0.033, respectively, in the 0, 0.01, 0.1, 1, 10, and 100 ng/ml NGF groups [P = 0.800, 0.428, 0.981, 0.596, and 0.913, respectively, compared with control group]), and FCM analysis showed that the percentage of CFs in G0/G1, S, and G2/M phases was not changed (P > 0.05). The cell scratch wound model and transwell showed that CFs migration was not significantly different (P > 0.05).
ConclusionNGF induces myofibroblast transformation but does not influence proliferation, cell cycle, or migration of CFs in vitro.
Actins ; metabolism ; Animals ; Cell Cycle ; drug effects ; physiology ; Cell Movement ; drug effects ; physiology ; Cell Proliferation ; physiology ; Cells, Cultured ; Myofibroblasts ; cytology ; drug effects ; Nerve Growth Factor ; metabolism ; pharmacology ; Rats ; Rats, Sprague-Dawley
4.Brain Protection of Muscone in Rats with Brain Injury.
Tao JIANG ; Li-fa HUANG ; Shui-jing ZHOU ; Jian-jun CUI ; Qiang YE
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(6):724-728
OBJECTIVETo observe cerebral protective effect of muscone (nasal administration) on traumatic brain injury model rats.
METHODSSD rats were divided into the sham-operation group, the model group, and the treatment groups according to random digit table, 50 in each group. Traumatic brain injury model was established by controlled cortical strike. Rats in the sham-operation group received surgery and anesthesia procedures only, with no strike. Muscone (1.8 mg/kg) was delivered to rats in the treatment group using in situ nasal perfusion, 30 min each time, twice daily for 7 successive days. Water content of brain tissue was detected in each group before intervention (T1), at day 3 of intervention (T2), day 5 of intervention (T3), and after intervention (T4), respectively. Expression levels of brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were detected using immunohistochemical analysis.
RESULTSCompared with the sham-operated group, water content of brain tissue increased (P < 0.05), and expression levels of NGF and BDNF decreased in the model group at T1, T2, T3, and T4 (P <0. 01). Compared with the model group, water content of brain tissue decreased (P < 0.05), and expression levels of NGF and BDNF increased (P < 0.01) in the treatment group at T1, T2, and T3.
CONCLUSIONNasal administration of muscone could reduce water content of brain tissue, alleviate cerebral edema, promote secretion of BDNF and NGF by olfactory ensheathing cells in traumatic brain injury rats.
Animals ; Brain ; drug effects ; Brain Injuries ; drug therapy ; Brain-Derived Neurotrophic Factor ; metabolism ; Cycloparaffins ; pharmacology ; Nerve Growth Factor ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley
5.Preventive Effect of Different Compatibilities of Ramulus Cinnamomi and Radix Paeomlae alba in Guizhi Decoction on Cardiac Sympathetic Denervation Induced by 6-OHDA.
Ping JIANG ; Du-fang MA ; Yue-hua JIANG ; Jin-long YANG ; Xiang-dong XU ; Xue WANG ; Hai-qing LIN ; Xiao LI
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(5):608-613
OBJECTIVETo observe the preventive effect of different compatibilities of Ramulus Cinnamomi (RC) and Radix Paeomiae alba (RPA) in Guizhi Decoction (GZD) on neurotransmitters and their rate-limiting enzymes, and neurotrophic factors of cardiac sympathetic denervation model rats induced by 6-hydroxydopamine (6-OHDA).
METHODSTotally 54 male Wistar rats were randomly divided into 6 groups, i.e., the blank control group, the model group, the methycobal group, the 2:1 (RC/RPA) Guishao group, the 1:2 Guishao group, and the 1:1 Guishao group, 9 in each group. Sympathetic denervation was induced by intraperitoneal injection of 6-OHDA for three successive days. Rats in the methycobal group and GZD groups were administered with corresponding decoction by gastrogavage 1 week before modeling (methycobal at the daily dose 0.15 mg/kg; GZD at the daily dose of 4.0, 5.5, 5.5 g crude drugs/kg for GZD 1:1, 1:2, and 2:1 groups). All medication lasted for 10 successive days. Levels of norepinephrine (NE), tyrosine hydroxylase (TH), choline acetyl-transferase (ChAT), nerve growth factor (NGF), growth associated protein43 (GAP-43) and ciliary neurotrophic factor (CNTF) in myocar- dial homogenates of right atrium and ventricular septum were detected by ELISA.
RESULTSCompared with the blank control group, levels of NE, TH, TH/ChAT ratio, and GAP-43 in myocardial homogenates of right atrium and ventricular septum decreased in the model group, and level of NGF increased (P < 0.01, P < 0.05). Compared with the model group, levels of NE and GAP-43 increased in the right atrium and interventricular septum; NGF level of the ventricular septum decreased in the methycobal group and each GZD groups. TH and TH/ChAT ratio in the right atrium increased in the 2:1 Guishao group and the 1:2 Guishao group (P < 0.01, P < 0.05); NGF levels in the right atrium and interventricular septum decreased only in the 1:1 Guishao group (P < 0.01, P< 0.05). Compared with the methycobal group, levels of NE, TH, and GAP-43 in the right atrium and interventricular septum increased, and NGF levels in the right atrium and interventricular septum decreased in the 1:1 Guishao group (P < 0.05). Compared with the methycobal group, levels of NE and GAP-43 in interventricular septum increased in the 2:1 Guishao group (P < 0.05).
CONCLUSIONGZD (with the proportion between RC and RPA 2:1 and 1:1) could improve contents of neurotransmitters and their rate-limiting enzymes, as well as neurotrophic factors in cardiac sympathetic denervation model rats induced by 6-OHDA, alleviate cardiac sympathetic denervation induced by 6-OHDA, and maintain the balance of sympathetic-vagal nerve system.
Animals ; Choline O-Acetyltransferase ; metabolism ; Ciliary Neurotrophic Factor ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; GAP-43 Protein ; metabolism ; Heart ; drug effects ; innervation ; Male ; Myocardium ; metabolism ; Nerve Growth Factor ; metabolism ; Norepinephrine ; metabolism ; Oxidopamine ; adverse effects ; Random Allocation ; Rats ; Rats, Wistar ; Sympathectomy ; Tyrosine 3-Monooxygenase ; metabolism
6.Phosphorylation of ezrin Tyr477 is critical in invasion of breast cancer cells stimulated by precursor of nerve growth factor.
Fu-Xi LI ; Wen-Feng SHAO ; Rui TANG ; Xiao-Ran YU ; Qiao-Sheng WEN ; Yan-Lin YU ; Jing-Bo XIONG
Journal of Southern Medical University 2016;36(7):898-903
OBJECTIVETo investigate the effect of precursor of nerve growth factor (proNGF) in promoting invasion of breast cancer cells and its relation with ezrin expression and phosphorylation of ezrin Thr567 and Tyr477.
METHODSHuman breast cancer cell lines MDA-MB-231 and MCF-7 were stimulated by gradient concentrations of proNGF (0, 2.5, 5 and 10 ng/mL) for 16 h, and the invasion of the cells was assessed with Transwell assay. The expression of ezrin and the phosphorylation of ezrin Thr567 and ezrin Tyr477 in the treated cells were examined by Western blotting. MDA-MB-231 cells were transfected with pEnter-His-ezrinY477F (a dominant negative mutant) to study the role of phosphrylation of ezrin Tyr477 in the invasion of breast cancer cell stimulated by proNGF.
RESULTSproNGF significantly promoted MDA-MB-231 and MCF-7 cell invasion in a concentration-dependent manner (P<0.05), and concentration- and time-dependently increased the phosphorylation of ezrin Tyr477 (P<0.05) without affecting the expression of ezrin or the phosphorylation of ezrin Thr567. The specific inhibitor of src, SKI-606, significantly inhibited the phosphorylation of ezrin Tyr477 induced by proNGF. Transfection with pEnter-His- ezrinY477F inhibited proNGF-induced invasion and phosphorylation of ezrin Tyr477 in MDA-MB-231 cells (P<0.05).
CONCLUSIONPhosphorylation of ezrin Tyr477 plays a critical role in the invasion of breast cancer cells stimulated by proNGF via proNGF/src/ezrin Tyr477 pathway.
Breast Neoplasms ; pathology ; Cell Line, Tumor ; Cytoskeletal Proteins ; chemistry ; Humans ; MCF-7 Cells ; Neoplasm Invasiveness ; Nerve Growth Factor ; pharmacology ; Phosphorylation ; Signal Transduction ; Transfection ; Tyrosine
7.Effects of Chinese Medicinal Compound Jinmaitong on the Expression of Nitrotyrosine andNerve Growth Factor in the Dorsal Root Ganglia of Diabetic Rats.
Ya-Nan WU ; Xiao-Chun LIANG ; Dan YANG ; Ling QU ; Wei LIU ; Yun-Zhou GAO
Acta Academiae Medicinae Sinicae 2016;38(5):507-513
Objective To study the effects of Chinese medicinal compound Jinmaitong(JMT) on the expressions of nitrotyrosine (NT) and nerve growth factor (NGF) in dorsal root ganglia of diabetic rats. Methods Experimental rat diabetic models were established by the intraperitoneal injection of streptozotocin. Rat models were then randomly divided into four groups including normal control group (Con group),diabetes mellitus group (DM group),Jinmaitong group(JMT group)(treated with JMT similar to the fifteen-fold dose of adult recommended dosage),and taurine group(Tau group)(treated with Taurine similar to the fifteen-fold dose of adult recommended dosage),with 10 rats in each group. The Con and DM groups were treated with distilled water at a daily dose of 1 ml/100 g. All rats were given intragastric administration for 16 weeks and then killed. Body weight and blood glucose were detected before and at the 4th,8th,12th,and 16th week after treatment. The pain threshold to mechanical stimulation with von Frey filament were carried out before death. The expressions of NT and NGF in dorsal root ganglion were detected by immunohistochemistry and Western blot analysis,respectively. Results Immunohistochemistry showed that the average optical density (AOD) of NT expression in DM group were significantly higher than those in control group (P=0.000),and the AOD of NGF was significantly lower than the control group (P=0.006).The AOD of NT(P=0.000,P=0.000) in both treatment groups decreased significantly and the AOD of NGF(P=0.000, P=0.004)significantly increased compared with DM group. The AOD of NT in JMT group was significantly lower than Tau group (P=0.004). Western blot analysis showed that the protein level of NT in DM group was significantly higher than that in control group (P=0.000),and the protein level of NGF was significantly lower than that in control group (P=0.000). Compared with the DM group,the protein level of NT in both treatment groups significantly decreased (P=0.001,P=0.000),and the protein level of NGF increased significantly (P=0.000,P=0.001). Conclusion Traditional Chinese medicine JMT can obviously up-regulate the expressions of NGF and reduce the NT levels in dorsal root ganglia of diabetic rats.
Animals
;
Blood Glucose
;
Body Weight
;
Diabetes Mellitus, Experimental
;
drug therapy
;
pathology
;
Drugs, Chinese Herbal
;
pharmacology
;
Ganglia, Spinal
;
drug effects
;
metabolism
;
Immunohistochemistry
;
Nerve Growth Factor
;
metabolism
;
Pain Threshold
;
Random Allocation
;
Rats
;
Tyrosine
;
analogs & derivatives
;
metabolism
8.Effects of Exogenous Nerve Growth Factor on Late Reperfusion after Myocardial Infarction.
Yang LIU ; Shaomin ZHANG ; Chunli SUN ; Jinhui WU
Journal of Biomedical Engineering 2015;32(6):1294-1301
This study demonstrates that nerve growth factor (NGF) plays a protective role in myocardial infarction and early reperfusion by reducing the myocardial cell apoptosis and by improving ventricular remodeling and seeks to assess the effects and mechanisms of NGF on late reperfusion after myocardial infarction. The models of late reperfusion were established by ligating the left main coronary artery and then cutting the suture 2 hours after coronary artery ligation. The rats in NGF treatment group were injected 10 µL Ad-NGF (by constructing the adenovirus vector Ad-NGF containing NGF gene) at four locations around infarction. The rats in adenoviral vector (Adv) group were injected 10 µL adenoviral cector as the NGF group. The late reperfusion group and the sham group were given normal saline as above, and the sham group underwent thracotomy without coronary ligation. On the 3rd, 7th, 14th and 28th day after operation, we investigated the role of NGF on late reperfusion by recording cardiac structure and function with echocardiography, by examining the expression of NGF and VIII factor with immunohistochemical method, and by evaluating the myocardial cell apoptosis with terminal dUTP nick end-labeling method (TUNEL). We found that the NGF group had higher expression of NGF protein (P < 0.01) and lower apoptosis index (AI) (P < 0.01 or P < 0.05) compared to the late reperfusion group and Adv group on all time points. The NGF group had remarkably higher level of neovascularization compared to the late reperfusion group on the 14th day (P < 0.01) and the 28th day (P < 0.05). The NGF group also had higher LVEF and FS levels compared to the late reperfusion group on the 14th day (P = 0.006, P = 0.006) and on the 28th day (P = 0.000, P = 0.000). Whereas the NGF group had lower LVEDD, LVESD (P = 0.038, P = 0.000) and lower LVEDV, LVESV (P = 0.001, P = 0.000) on the 28th day compared to late reperfusion group. In this experiment, the NGF gene carried by adenovirus vector had been transfected and obviously increased the expression of NGF protein in NGF group. NGF may help postpone the myocardial remodeling and improve the heart function by promoting the myocardial neovascularization and inhibiting myocardial apoptosis.
Adenoviridae
;
Animals
;
Apoptosis
;
Disease Models, Animal
;
Echocardiography
;
Genetic Therapy
;
Myocardial Infarction
;
therapy
;
Myocardium
;
pathology
;
Myocytes, Cardiac
;
cytology
;
Nerve Growth Factor
;
pharmacology
;
Rats
;
Reperfusion Injury
;
therapy
9.NGF and HB-EGF: Potential Biomarkers that Reflect the Effects of Fesoterodine in Patients with Overactive Bladder Syndrome.
Soo Rim KIM ; Yeo Jung MOON ; Sei Kwang KIM ; Sang Wook BAI
Yonsei Medical Journal 2015;56(1):204-211
PURPOSE: To determine whether levels of nerve growth factor (NGF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) can be used to objectively assess overactive bladder syndrome (OAB) treatment outcome and to evaluate the effects of fixed-dose fesoterodine on OAB symptoms. MATERIALS AND METHODS: This study included 124 participants (62 patients with OAB and 62 controls) in Severance Hospital between 2010 and 2012. In patients with OAB, 4 mg fesoterodine was administered once daily. Repeated evaluations of putative biomarker levels, urine creatinine (Cr) levels, and questionnaire responses, including the Overactive Bladder Symptom Score (OABSS) and the Overactive Bladder Questionnaire (OAB q), were performed from baseline to 16 weeks. RESULTS: Urinary levels of NGF/Cr (OAB: 1.13+/-0.9 pg/mg; control: 0.5+/-0.29 pg/mg) and HB-EGF/Cr (OAB: 8.73+/-6.55 pg/mg; control: 4.45+/-2.93 pg/mg) were significantly higher in subjects with OAB than in controls (p<0.001). After 16 weeks of fixed-dose fesoterodine treatment, urinary NGF/Cr levels (baseline: 1.13+/-0.08 pg/mg; 16 weeks: 0.60+/-0.4 pg/mg; p=0.02) and HB-EGF/Cr levels significantly decreased (baseline: 8.73+/-6.55 pg/mg; 16 weeks: 4.72+/-2.69 pg/mg; p=0.03, respectively). Both the OABSS and OAB q scores improved (p<0.001). However, there were no a statistically significant correlations between these urinary markers and symptomatic scores. CONCLUSION: Urinary levels of NGF and HB-EGF may be potential biomarkers for evaluating outcome of OAB treatment. Fixed-dose fesoterodine improved OAB symptoms. Future studies are needed to further examine the significance of urinary NGF and HB-EGF levels as therapeutic markers for OAB.
Adult
;
Benzhydryl Compounds/pharmacology/*therapeutic use
;
Biological Markers/urine
;
Case-Control Studies
;
Creatinine/urine
;
Female
;
Heparin-binding EGF-like Growth Factor/*urine
;
Humans
;
Male
;
Middle Aged
;
Nerve Growth Factor/*urine
;
Questionnaires
;
Treatment Outcome
;
Urinary Bladder, Overactive/*drug therapy/physiopathology/*urine
;
Urodynamics
10.Effect of Draconis Sanguis-containing serum on NGF, BDNF, CNTF, LNGFR, TrkA, GDNF, GAP-43 and NF-H expressions in Schwann cells.
Jin GU ; Xin-rong HE ; Ya-liang HAN
China Journal of Chinese Materia Medica 2015;40(7):1392-1395
OBJECTIVETo observe the effect of Draconis Sanguis-containing serum on the expressions of NGF, BDNF, CNTF, LNG-FR, TrkA, GDNF, GAP-43 and NF-H in Schwann cells, and investigate the possible mechanism of Draconis Sanguis to promote peripheral nerve regeneration.
METHODSD rats were randomly divided into 2 groups: the Draconis Sanguis group (orally administered with Draconis Sanguis-containing balm solution) and the blank group (equivoluminal balm) to prepare Draconis Sanguis-containing serum and blank control serum. Schwann cells were extracted from double sciatic nerves of three-day-old SD rats, divided into 2 groups: the Draconis Sanguis group and the blank control group, and respectively cultured with 10% Draconis Sanguis-containing serum or blank control serum. The mRNA expressions of NGF, BDNF, CNTF and other genes in Schwann cells were measured by RT-PCR analysis 48 hours later.
RESULTMost of the Schwann cells were bipolar spindle and arranged shoulder to shoulder or end to end under the microscope and identified to be positive with the immunocytochemical method. To compare with the blank group, mRNA expressions of NGF, LNGFR, GDNF and GAP-43 significantly increased (P < 0.01). Whereas that of BDNF decreased significantly (P < 0.05), and so did that of TrkA, CNTF (P < 0.01), with no remarkable difference in NF-H-mRNA.
CONCLUSIONTraditional Chinese medicine Draconis Sanguis may show effect in nerve regeneration by up-regulating mRNA expressions of NGF, LNGFR, GDNF and GAP-43 and down-regulating mRNA expressions of TrkA, BDNF and CNTF.
Animals ; Arecaceae ; chemistry ; Brain-Derived Neurotrophic Factor ; genetics ; metabolism ; Cells, Cultured ; Ciliary Neurotrophic Factor ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; GAP-43 Protein ; genetics ; metabolism ; Gene Expression ; drug effects ; Glial Cell Line-Derived Neurotrophic Factor ; genetics ; metabolism ; Male ; Nerve Growth Factor ; genetics ; metabolism ; Nerve Regeneration ; drug effects ; Neurofilament Proteins ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor, trkA ; genetics ; metabolism ; Schwann Cells ; drug effects ; physiology ; Serum ; chemistry

Result Analysis
Print
Save
E-mail