1.The Circadian System Is Essential for the Crosstalk of VEGF-Notch-mediated Endothelial Angiogenesis in Ischemic Stroke.
Yuxing ZHANG ; Xin ZHAO ; Chun GUO ; Ying ZHANG ; Fukang ZENG ; Qian YIN ; Zhong LI ; Le SHAO ; Desheng ZHOU ; Lijuan LIU
Neuroscience Bulletin 2023;39(9):1375-1395
Ischemic stroke is a major public health problem worldwide. Although the circadian clock is involved in the process of ischemic stroke, the exact mechanism of the circadian clock in regulating angiogenesis after cerebral infarction remains unclear. In the present study, we determined that environmental circadian disruption (ECD) increased the stroke severity and impaired angiogenesis in the rat middle cerebral artery occlusion model, by measuring the infarct volume, neurological tests, and angiogenesis-related protein. We further report that Bmal1 plays an irreplaceable role in angiogenesis. Overexpression of Bmal1 promoted tube-forming, migration, and wound healing, and upregulated the vascular endothelial growth factor (VEGF) and Notch pathway protein levels. This promoting effect was reversed by the Notch pathway inhibitor DAPT, according to the results of angiogenesis capacity and VEGF pathway protein level. In conclusion, our study reveals the intervention of ECD in angiogenesis in ischemic stroke and further identifies the exact mechanism by which Bmal1 regulates angiogenesis through the VEGF-Notch1 pathway.
Rats
;
Animals
;
Vascular Endothelial Growth Factor A/pharmacology*
;
Brain Ischemia/metabolism*
;
Ischemic Stroke
;
Signal Transduction
;
ARNTL Transcription Factors/pharmacology*
;
Neovascularization, Physiologic/physiology*
2.Exosomes derived from Nr-CWS pretreated MSCs facilitate diabetic wound healing by promoting angiogenesis via the circIARS1/miR-4782-5p/VEGFA axis.
Qiang LI ; Lei GUO ; Jian WANG ; Shengjun TAO ; Peisheng JIN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(3):172-184
Mesenchymal stem cell (MSC)-derived exosomes (Exos) were reported to a prospective candidate in accelerating diabetic wound healing due to their pro-angiogenic effect. MSCs pretreated with chemistry or biology factors were reported to advance the biological activities of MSC-derived exosomes. Hence, this study was designed to explore whether exosomes derived from human umbilical cord MSCs (hucMSCs) preconditioned with Nocardia rubra cell wall skeleton (Nr-CWS) exhibited superior proangiogenic effect on diabetic wound repair and its underlying molecular mechanisms. The results showed that Nr-CWS-Exos facilitated the proliferation, migration and tube formation of endothelial cells in vitro. In vivo, Nr-CWS-Exos exerted great effect on advancing wound healing by facilitating the angiogenesis of wound tissues compared with Exos. Furthermore, the expression of circIARS1 increased after HUVECs were treated with Nr-CWS-Exos. CircIARS1 promoted the pro-angiogenic effects of Nr-CWS-Exos on endothelial cellsvia the miR-4782-5p/VEGFA axis. Taken together, those data reveal that exosomes derived from Nr-CWS-pretreated MSCs might serve as an underlying strategy for diabetic wound treatment through advancing the biological function of endothelial cells via the circIARS1/miR-4782-5p/VEGFA axis.
Humans
;
Endothelial Cells/metabolism*
;
Exosomes/metabolism*
;
Cell Wall Skeleton/metabolism*
;
Neovascularization, Physiologic
;
Wound Healing/physiology*
;
MicroRNAs/metabolism*
;
Diabetes Mellitus
;
Vascular Endothelial Growth Factor A/metabolism*
3.Effects of P311 on the angiogenesis ability of human microvascular endothelial cell 1 in vitro and its molecular mechanism.
Song WANG ; Hai Sheng LI ; Wei QIAN ; Xiao Rong ZHANG ; Wei Feng HE ; Gao Xing LUO
Chinese Journal of Burns 2022;38(2):119-129
Objective: To explore the effects of P311 on the angiogenesis ability of human microvascular endothelial cell 1 (HMEC-1) in vitro and the potential molecular mechanism. Methods: The experimental research method was used. HMEC-1 was collected and divided into P311 adenovirus group and empty adenovirus group according to the random number table (the same grouping method below), which were transfected correspondingly for 48 h. The cell proliferation activity was detected using the cell counting kit 8 on 1, 3, and 5 days of culture. The residual scratch area of cells at post scratch hour 6 and 11 was detected by scratch test, and the percentage of the residual scratch area was calculated. The blood vessel formation of cells at 8 h of culture was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. The protein expressions of vascular endothelial growth factor receptor 2 (VEGFR2), phosphorylated VEGFR2 (p-VEGFR2), extracellular signal-regulated kinase 1/2 (ERK1/2), and phosphorylated ERK1/2 (p-ERK1/2) in cells were detected by Western blotting. HMEC-1 was collected and divided into P311 adenovirus+small interfering RNA (siRNA) negative control group, empty adenovirus+siRNA negative control group, P311 adenovirus+siRNA-VEGFR2 group, and empty adenovirus+siRNA-VEGFG2 group, which were treated correspondingly. The protein expressions of VEGFR2, p-VEGFR2, ERK1/2, and p-ERK1/2 in cells were detected by Western blotting at 24 h of transfection. The blood vessel formation of cells at 24 h of transfection was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. HMEC-1 was collected and divided into P311 adenovirus+dimethylsulfoxide (DMSO) group, empty adenovirus+DMSO group, P311 adenovirus+ERK1/2 inhibitor group, and empty adenovirus+ERK1/2 inhibitor group, which were treated correspondingly. The protein expressions of ERK1/2 and p-ERK1/2 in cells were detected by Western blotting at 2 h of treatment. The blood vessel formation of cells at 2 h of treatment was observed by angiogenesis experiment in vitro, and the number of nodes and total length of the tubular structure were measured. The sample number at each time point in each group was 6. Data were statistically analyzed with independent sample t test, analysis of variance for repeated measurement, one-way analysis of variance, and least significant difference test. Results: Compared with that of empty adenovirus group, the proliferation activity of cells in P311 adenovirus group did not show significant difference on 1, 3, and 5 days of culture (with t values of -0.23, -1.30, and -1.52, respectively, P>0.05). The residual scratch area percentages of cells in P311 adenovirus group were significantly reduced at post scratch hour 6 and 11 compared with those of empty adenovirus group (with t values of -2.47 and -2.62, respectively, P<0.05). At 8 h of culture, compared with those of empty adenovirus group, the number of nodes and total length of the tubular structure of cells in P311 adenovirus group were significantly increased (with t values of 4.49 and 4.78, respectively, P<0.01). At 48 h of transfection, compared with those of empty adenovirus group, the protein expressions of VEGFR2 and ERK1/2 of cells in P311 adenovirus group showed no obvious changes (P>0.05), and the protein expressions of p-VEGFR2 and p-ERK1/2 of cells in P311 adenovirus group were significantly increased (with t values of 17.27 and 16.08, P<0.01). At 24 h of transfection, the protein expressions of p-VEGFR2 and p-ERK1/2 of cells in P311 adenovirus+siRNA negative control group were significantly higher than those in empty adenovirus+siRNA negative control group (P<0.01). The protein expressions of VEGFR2, p-VEGFR2, and p-ERK1/2 of cells in P311 adenovirus+siRNA negative control group were significantly higher than those in P311 adenovirus+siRNA-VEGFR2 group (P<0.01). The protein expressions of VEGFR2 and p-ERK1/2 of cells in empty adenovirus+siRNA negative control group were significantly higher than those in empty adenovirus+siRNA-VEGFR2 group (P<0.05 or P<0.01). At 24 h of transfection, the number of nodes of the tubular structure in cells of P311 adenovirus+siRNA negative control group was 720±62, which was significantly more than 428±38 in empty adenovirus+siRNA negative control group and 364±57 in P311 adenovirus+siRNA-VEGFR2 group (with P values both <0.01). The total length of the tubular structure of cells in P311 adenovirus+siRNA negative control group was (21 241±1 139) μm, which was significantly longer than (17 005±1 156) μm in empty adenovirus+siRNA negative control group and (13 494±2 465) μm in P311 adenovirus+siRNA-VEGFR2 group (with P values both <0.01). The number of nodes of the tubular structure in cells of empty adenovirus+siRNA negative control group was significantly more than 310±75 in empty adenovirus+siRNA-VEGFR2 group (P<0.01), and the total length of the tubular structure of cells in empty adenovirus+siRNA negative control group was significantly longer than (11 600±2 776) μm in empty adenovirus+siRNA-VEGFR2 group (P<0.01). At 2 h of treatment, the protein expression of p-ERK1/2 of cells in P311 adenovirus+DMSO group was significantly higher than that in empty adenovirus+DMSO group and P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01), and the protein expression of p-ERK1/2 of cells in empty adenovirus+DMSO group was significantly higher than that in empty adenovirus+ERK1/2 inhibitor group (P<0.05). At 2 h of treatment, the number of nodes of the tubular structure in cells of P311 adenovirus+DMSO group was 726±72, which was significantly more than 421±39 in empty adenovirus+DMSO group and 365±41 in P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01). The total length of the tubular structure of cells in P311 adenovirus+DMSO group was (20 318±1 433) μm, which was significantly longer than (16 846±1 464) μm in empty adenovirus+DMSO group and (15 114±1 950) μm in P311 adenovirus+ERK1/2 inhibitor group (with P values both <0.01). The number of nodes of the tubular structure in cells of empty adenovirus+DMSO group was significantly more than 317±67 in empty adenovirus+ERK1/2 inhibitor group (P<0.01), and the total length of the tubular structure of cells in empty adenovirus+DMSO group was significantly longer than (13 188±2 306) μm in empty adenovirus+ERK1/2 inhibitor group (P<0.01). Conclusions: P311 can enhance the angiogenesis ability of HMEC-1 by activating the VEGFR2/ERK1/2 signaling pathway.
Adenoviridae/genetics*
;
Cell Line
;
Endothelial Cells
;
Endothelium, Vascular
;
Humans
;
Neovascularization, Physiologic
;
Nerve Tissue Proteins
;
Oncogene Proteins
;
Signal Transduction
;
Transfection
;
Vascular Endothelial Growth Factor A
4.Effects of leptin-modified human placenta-derived mesenchymal stem cells on angiogenic potential and peripheral inflammation of human umbilical vein endothelial cells (HUVECs) after X-ray radiation.
Shu CHEN ; Qian WANG ; Bing HAN ; Jia WU ; Ding-Kun LIU ; Jun-Dong ZOU ; Mi WANG ; Zhi-Hui LIU
Journal of Zhejiang University. Science. B 2020;21(4):327-340
Combined radiation-wound injury (CRWI) is characterized by blood vessel damage and pro-inflammatory cytokine deficiency. Studies have identified that the direct application of leptin plays a significant role in angiogenesis and inflammation. We established a sustained and stable leptin expression system to study the mechanism. A lentivirus method was employed to explore the angiogenic potential and peripheral inflammation of irradiated human umbilical vein endothelial cells (HUVECs). Leptin was transfected into human placenta-derived mesenchymal stem cells (HPMSCs) with lentiviral vectors. HUVECs were irradiated by X-ray at a single dose of 20 Gy. Transwell migration assay was performed to assess the migration of irradiated HUVECs. Based on the Transwell systems, co-culture systems of HPMSCs and irradiated HUVECs were established. Cell proliferation was measured by cell counting kit-8 (CCK-8) assay. The secretion of pro-inflammatory cytokines (human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-1α, IL-6, and IL-8) was detected by enzyme-linked immunosorbent assay (ELISA). The expression of pro-angiogenic factors (vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)) mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Relevant molecules of the nuclear factor-κB (NF-κB) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways were detected by western blot assay. Results showed that leptin-modified HPMSCs (HPMSCs/ leptin) exhibited better cell proliferation, migration, and angiogenic potential (expressed more VEGF and bFGF). In both the single HPMSCs/leptin and the co-culture systems of HPMSCs/leptin and irradiated HUVECs, the increased secretion of pro-inflammatory cytokines (human GM-CSF, IL-1α, and IL-6) was associated with the interaction of the NF-κB and JAK/STAT signaling pathways. We conclude that HPMSCs/leptin could promote angiogenic potential and peripheral inflammation of HUVECs after X-ray radiation.
Cell Proliferation
;
Cells, Cultured
;
Cytokines/biosynthesis*
;
Female
;
Human Umbilical Vein Endothelial Cells/radiation effects*
;
Humans
;
Inflammation/etiology*
;
Leptin/pharmacology*
;
Mesenchymal Stem Cells/physiology*
;
Neovascularization, Physiologic/physiology*
;
Placenta/cytology*
;
Pregnancy
;
STAT3 Transcription Factor/genetics*
;
Transcription Factor RelA/genetics*
;
X-Rays
5.Contribution of Tissue Hypoxia to Corpus Luteum Formation.
Yuan Zhao LIU ; Hong Zheng ZHANG ; Qi Jia WU ; Chao Zheng WANG
Acta Academiae Medicinae Sinicae 2019;41(6):837-841
Corpus luteum is a temporary endocrine organ that is formed and regressed during the female reproductive cycle.It is developed from the residual follicular tissue after ovulation,which is associated with the rapid angiogenesis.Vascular endothelial growth factor(VEGF)is the most important stimulatory factor that regulates the luteal angiogenesis and also plays a key role during corpus luteum formation.VEGF is regulated by hypoxia-inducible factor(HIF)-1,which is a heterodimeric transcription factor consistent of HIF-1α and HIF-1β.The local hypoxia of ovary due to the ruptured follicle and the lack of new vascular networks induces HIF-1α expression and participates in the luteal formation through VEGF-dependent angiogenesis.The present article describes the functional and structural changes during the luteal formation from the local and hypoxic conditions immediately before and after ovulation,with an attempt to clarify the roles of hypoxia in luteal formation as well as ovarian physiology.
Corpus Luteum
;
Female
;
Humans
;
Hypoxia
;
Neovascularization, Physiologic
;
Ovary
;
Vascular Endothelial Growth Factor A
6.Finasteride inhibits microvascular density and VEGF expression in the seminal vesicle of rats.
Shuai SUN ; Yong-Chuan WANG ; Kai GUO ; Jing DU ; Hai-Jun ZHOU ; An-Ji REN
National Journal of Andrology 2018;24(5):387-392
ObjectiveTo investigate the effect of finasteride on the microvascular density (MVD) and the expression of the vascular endothelial growth factor (VEGF) in the seminal vesicle of rats.
METHODSForty male SD rats were randomly and equally divided into groups A, B, C and D, those in groups A and B fed with normal saline as the control and those in C and D with finasteride at 40 mg per kg of the body weight per day, A and C for 14 days and B and D for 28 days. Then the seminal vesicles of the animals were harvested for HE staining, measurement of MVD, determination of the expressions of CD34 and VEGF by immunohistochemistry, and observation of histomorphological changes in the seminal vesicle.
RESULTSThe expressions of CD34 in groups C and D were decreased by 6.7% and 15.8% as compared with those in A and B (P<0.01), and that in group D decreased by 9.3% in comparison with that in C (P<0.01). The expression indexes of VEGF in groups C and D were decreased by 6.9% and 14.1% as compared with those in A and B (P<0.01), and that in group D decreased by 9.0% in comparison with that in C (P<0.01).
CONCLUSIONSFinasteride can inhibit the expression of VEGF in the seminal vesicle tissue of the rat and hence suppress the angiogenesis of microvessels of the seminal vesicle.
Angiogenesis Inhibitors ; pharmacology ; Animals ; Antigens, CD34 ; metabolism ; Finasteride ; pharmacology ; Immunohistochemistry ; Male ; Neovascularization, Physiologic ; drug effects ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Seminal Vesicles ; blood supply ; drug effects ; metabolism ; Vascular Endothelial Growth Factor A ; metabolism
7.Paeoniflorin Promotes Angiogenesis in A Vascular Insufficiency Model of Zebrafish in vivo and in Human Umbilical Vein Endothelial Cells in vitro.
Qi-Qi XIN ; Bin-Rui YANG ; He-Feng ZHOU ; Yan WANG ; Bo-Wen YI ; Wei-Hong CONG ; Simon Ming-Yuen LEE ; Ke-Ji CHEN
Chinese journal of integrative medicine 2018;24(7):494-501
OBJECTIVETo investigate the pro-angiogenic effects of paeoniflorin (PF) in a vascular insufficiency model of zebrafish and in human umbilical vein endothelial cells (HUVECs).
METHODSIn vivo, the pro-angiogenic effects of PF were tested in a vascular insufficiency model in the Tg(fli-1:EGFP)y1 transgenic zebrafish. The 24 h post fertilization (hpf) embryos were pretreated with vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor II (VRI) for 3 h to establish the vascular insufficiency model and then post-treated with PF for 24 h. The formation of intersegmental vessels (ISVs) was observed with a fluorescence microscope. The mRNA expression of fms-like tyrosine kinase-1 (flt-1), kinase insert domain receptor (kdr), kinase insert domain receptor like (kdrl) and von Willebrand factor (vWF) were analyzed by real-time polymerase chain reaction (PCR). In vitro, the pro-angiogenic effects of PF were observed in HUVECs in which cell proliferation, migration and tube formation were assessed.
RESULTSPF (6.25-100 μmol/L) could rescue VRI-induced blood vessel loss in zebrafish and PF (25-100 μmol/L), thereby restoring the mRNA expressions of flt-1, kdr, kdrl and vWF, which were down-regulated by VRI treatment. In addition, PF (0.001-0.03 μmol/L) could promote the proliferation of HUVECs while PF stimulated HUVECs migration at 1.0-10 μmol/L and tube formation at 0.3 μmol/L.
CONCLUSIONPF could promote angiogenesis in a vascular insufficiency model of zebrafish in vivo and in HUVECs in vitro.
Angiogenesis Inducing Agents ; pharmacology ; therapeutic use ; Animals ; Animals, Genetically Modified ; Cells, Cultured ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Embryo, Nonmammalian ; Glucosides ; pharmacology ; therapeutic use ; Human Umbilical Vein Endothelial Cells ; drug effects ; physiology ; Humans ; Monoterpenes ; pharmacology ; therapeutic use ; Neovascularization, Physiologic ; drug effects ; Phytotherapy ; Vascular Diseases ; drug therapy ; pathology ; Zebrafish
8.In Vitro Angiogenesis Effect of Xuefu Zhuyu Decoction () and Vascular Endothelial Growth Factor: A Comparison Study.
Fan LIN ; Bin-Ling CHEN ; Yi-Zheng WANG ; Dong GAO ; Jun SONG ; T J KAPTCHUK ; Ke-Ji CHEN
Chinese journal of integrative medicine 2018;24(8):606-612
OBJECTIVETo compare the angiogenesis behaviors of vascular endothelial growth factor (VEGF) and Chinese medicine Xuefu Zhuyu Decoction (, XZD) treatments.
METHODSHuman microvascular endothelial cells (HMEC-1) were treated with various concentrations of either XZD-containing serum (XZD-CS) or VEGF for 24, 48, and 72 h, respectively. Cell viability, proliferation, migration, adhesion, and in vitro tube formation assays were used to assess their angiogenic effects.
RESULTSVEGF promoted all cellular phases involved in angiogenesis including cell viability, proliferation, migration, adhesion, and tube formation (<0.05 or <0.01). Unlike the continuous promotion effects of VEGF at the above stages, XZD inhibited cell viability and proliferation (<0.05 or <0.01) and only promoted tube formation in the early phase of angiogenesis (<0.01).
CONCLUSIONSThese two medications promote different angiogenesis behaviors, which might be an important reason for their distinct therapeutic profile in clinical usage.
Cell Adhesion ; drug effects ; Cell Cycle ; drug effects ; Cell Line ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Cell Survival ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Endothelial Cells ; drug effects ; metabolism ; Humans ; Microvessels ; cytology ; Neovascularization, Physiologic ; drug effects ; Vascular Endothelial Growth Factor A ; pharmacology
9.1-Methoxycarbony-β-carboline from Picrasma quassioides exerts anti-angiogenic properties in HUVECs in vitro and zebrafish embryos in vivo.
Qing-Hua LIN ; Wei QU ; Jian XU ; Feng FENG ; Ming-Fang HE
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):599-609
Angiogenesis is a crucial process in the development of inflammatory diseases, including cancer, psoriasis and rheumatoid arthritis. Recently, several alkaloids from Picrasma quassioides had been screened for angiogenic activity in the zebrafish model, and the results indicated that 1-methoxycarbony-β-carboline (MCC) could effectively inhibit blood vessel formation. In this study, we further confirmed that MCC can inhibit, in a concentration-dependent manner, the viability, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro, as well as the regenerative vascular outgrowth of zebrafish caudal fin in vivo. In the zebrafish xenograft assay, MCC inhibited the growth of tumor masses and the metastatic transplanted DU145 tumor cells. The proteome profile array of the MCC-treated HUVECs showed that MCC could down-regulate several angiogenesis-related self-secreted proteins, including ANG, EGF, bFGF, GRO, IGF-1, PLG and MMP-1. In addition, the expression of two key membrane receptor proteins in angiogenesis, TIE-2 and uPAR, were also down-regulated after MCC treatment. Taken together, these results shed light on the potential therapeutic application of MCC as a potent natural angiogenesis inhibitor via multiple molecular targets.
Angiogenesis Inhibitors
;
chemistry
;
pharmacology
;
Animals
;
Carbolines
;
chemistry
;
pharmacology
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Epidermal Growth Factor
;
genetics
;
metabolism
;
Fibroblast Growth Factors
;
genetics
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Neovascularization, Physiologic
;
drug effects
;
Picrasma
;
chemistry
;
Plant Extracts
;
chemistry
;
pharmacology
;
Receptor, TIE-2
;
genetics
;
metabolism
;
Zebrafish
;
embryology
10.Prenatal Exposure to Perfluorooctane Sulfonate impairs Placental Angiogenesis and Induces Aberrant Expression of LncRNA Xist.
Gang CHEN ; Lin Lin XU ; Ye Fei HUANG ; Qi WANG ; Bing Hua WANG ; Ze Hua YU ; Qiao Mei SHI ; Jia Wei HONG ; Jing LI ; Li Chun XU
Biomedical and Environmental Sciences 2018;31(11):843-847
Alkanesulfonic Acids
;
toxicity
;
Animals
;
Female
;
Fluorocarbons
;
toxicity
;
Humans
;
Male
;
Mice
;
Neovascularization, Physiologic
;
drug effects
;
Pedigree
;
Placenta
;
blood supply
;
drug effects
;
metabolism
;
Pregnancy
;
Prenatal Exposure Delayed Effects
;
genetics
;
metabolism
;
physiopathology
;
RNA, Long Noncoding
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail