1.Extracellular vesicle-carried GTF2I from mesenchymal stem cells promotes the expression of tumor-suppressive FAT1 and inhibits stemness maintenance in thyroid carcinoma.
Jie SHAO ; Wenjuan WANG ; Baorui TAO ; Zihao CAI ; Haixia LI ; Jinhong CHEN
Frontiers of Medicine 2023;17(6):1186-1203
Through bioinformatics predictions, we identified that GTF2I and FAT1 were downregulated in thyroid carcinoma (TC). Further, Pearson's correlation coefficient revealed a positive correlation between GTF2I expression and FAT1 expression. Therefore, we selected them for this present study, where the effects of bone marrow mesenchymal stem cell-derived EVs (BMSDs-EVs) enriched with GTF2I were evaluated on the epithelial-to-mesenchymal transition (EMT) and stemness maintenance in TC. The under-expression of GTF2I and FAT1 was validated in TC cell lines. Ectopically expressed GTF2I and FAT1 were found to augment malignant phenotypes of TC cells, EMT, and stemness maintenance. Mechanistic studies revealed that GTF2I bound to the promoter region of FAT1 and consequently upregulated its expression. MSC-EVs could shuttle GTF2I into TPC-1 cells, where GTF2I inhibited TC malignant phenotypes, EMT, and stemness maintenance by increasing the expression of FAT1 and facilitating the FAT1-mediated CDK4/FOXM1 downregulation. In vivo experiments confirmed that silencing of GTF2I accelerated tumor growth in nude mice. Taken together, our work suggests that GTF2I transferred by MSC-EVs confer antioncogenic effects through the FAT1/CDK4/FOXM1 axis and may be used as a promising biomarker for TC treatment.
Mice
;
Animals
;
Cell Line, Tumor
;
Cell Proliferation
;
Mice, Nude
;
Epithelial-Mesenchymal Transition
;
Thyroid Neoplasms/pathology*
;
Extracellular Vesicles/pathology*
;
Mesenchymal Stem Cells
;
Transcription Factors, TFIII/metabolism*
;
Neoplastic Stem Cells/pathology*
2.LIMP-2 enhances cancer stem-like cell properties by promoting autophagy-induced GSK3β degradation in head and neck squamous cell carcinoma.
Yuantong LIU ; Shujin LI ; Shuo WANG ; Qichao YANG ; Zhizhong WU ; Mengjie ZHANG ; Lei CHEN ; Zhijun SUN
International Journal of Oral Science 2023;15(1):24-24
Cancer stem cell-like cells (CSCs) play an integral role in the heterogeneity, metastasis, and treatment resistance of head and neck squamous cell carcinoma (HNSCC) due to their high tumor initiation capacity and plasticity. Here, we identified a candidate gene named LIMP-2 as a novel therapeutic target regulating HNSCC progression and CSC properties. The high expression of LIMP-2 in HNSCC patients suggested a poor prognosis and potential immunotherapy resistance. Functionally, LIMP-2 can facilitate autolysosome formation to promote autophagic flux. LIMP-2 knockdown inhibits autophagic flux and reduces the tumorigenic ability of HNSCC. Further mechanistic studies suggest that enhanced autophagy helps HNSCC maintain stemness and promotes degradation of GSK3β, which in turn facilitates nuclear translocation of β-catenin and transcription of downstream target genes. In conclusion, this study reveals LIMP-2 as a novel prospective therapeutic target for HNSCC and provides evidence for a link between autophagy, CSC, and immunotherapy resistance.
Humans
;
Autophagy
;
Carcinoma, Squamous Cell/pathology*
;
Cell Line, Tumor
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Head and Neck Neoplasms/pathology*
;
Neoplastic Stem Cells/pathology*
;
Squamous Cell Carcinoma of Head and Neck/pathology*
;
Lysosome-Associated Membrane Glycoproteins
3.The expression and function of PD-L1 in CD133(+) human liver cancer stem-like cells.
Yu Di BAI ; Mao Lin SHI ; Si Qi LI ; Xiao Li WANG ; Jing Jing PENG ; Dai Jun ZHOU ; Fei Fan SUN ; Hua LI ; Chao WANG ; Min DU ; Tao ZHANG ; Dong LI
Chinese Journal of Oncology 2023;45(2):117-128
Objective: To investigate the expression of programmed death protein-ligand 1 (PD-L1) in liver cancer stem-like cells (LCSLC) and its effect on the characteristics of tumor stem cells and tumor biological function, to explore the upstream signaling pathway regulating PD-L1 expression in LCSLC and the downstream molecular mechanism of PD-L1 regulating stem cell characteristics, also tumor biological functions. Methods: HepG2 was cultured by sphere-formating method to obtain LCSLC. The expressions of CD133 and other stemness markers were detected by flow cytometry, western blot and real-time quantitative polymerase chain reaction (RT-qPCR) were used to detect the expressions of stemness markers and PD-L1. The biological functions of the LCSLC were tested by cell function assays, to confirm that the LCSLC has the characteristics of tumor stem cells. LCSLC was treated with cell signaling pathway inhibitors to identify relevant upstream signaling pathways mediating PD-L1 expression changes. The expression of PD-L1 in LCSLC was down regulated by small interfering RNA (siRNA), the expression of stem cell markers, tumor biological functions of LCSLC, and the changes of cell signaling pathways were detected. Results: Compared with HepG2 cells, the expression rate of CD133 in LCSLC was upregulated [(92.78±6.91)% and (1.40±1.77)%, P<0.001], the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were also higher than those in HepG2 cells (P<0.05), the number of sphere-formating cells increased on day 7 [(395.30±54.05) and (124.70±19.30), P=0.001], cell migration rate increased [(35.41±6.78)% and (10.89±4.34)%, P=0.006], the number of transmembrane cells increased [(75.77±10.85) and (20.00±7.94), P=0.002], the number of cloned cells increased [(120.00±29.51) and (62.67±16.77), P=0.043]. Cell cycle experiments showed that LCSLC had significantly more cells in the G(0)/G(1) phase than those in HepG2 [(54.89±3.27) and (32.36±1.50), P<0.001]. The tumor formation experiment of mice showed that the weight of transplanted tumor in LCSLC group was (1.32±0.17)g, the volume is (1 779.0±200.2) mm(3), were higher than those of HepG2 cell [(0.31±0.06)g and (645.6±154.9)mm(3), P<0.001]. The expression level of PD-L1 protein in LCSLC was 1.88±0.52 and mRNA expression level was 2.53±0.62, both of which were higher than those of HepG2 cells (P<0.05). The expression levels of phosphorylation signal transduction and transcription activation factor 3 (p-STAT3) and p-Akt in LCSLC were higher than those in HepG2 cells (P<0.05). After the expression of p-STAT3 and p-Akt was down-regulated by inhibitor treatment, the expression of PD-L1 was also down-regulated (P<0.05). In contrast, the expression level of phosphorylated extracellular signal-regulated protein kinase 1/2 (p-ERK1/2) in LCSLC was lower than that in HepG2 cells (P<0.01), there was no significant change in PD-L1 expression after down-regulated by inhibitor treatment (P>0.05). After the expression of PD-L1 was knockdown by siRNA, the expressions of CD133, Nanog, Oct4A and Snail in LCSLC were decreased compared with those of siRNA-negative control (NC) group (P<0.05). The number of sphere-formating cells decreased [(45.33±12.01) and (282.00±29.21), P<0.001], the cell migration rate was lower than that in siRNA-NC group [(20.86±2.74)% and (46.73±15.43)%, P=0.046], the number of transmembrane cells decreased [(39.67±1.53) and (102.70±11.59), P=0.001], the number of cloned cells decreased [(57.67±14.57) and (120.70±15.04), P=0.007], the number of cells in G(0)/G(1) phase decreased [(37.68±2.51) and (57.27±0.92), P<0.001], the number of cells in S phase was more than that in siRNA-NC group [(30.78±0.52) and (15.52±0.83), P<0.001]. Tumor formation in mice showed that the tumor weight of shRNA-PD-L1 group was (0.47±0.12)g, the volume is (761.3±221.4)mm(3), were lower than those of shRNA-NC group [(1.57±0.45)g and (1 829.0±218.3)mm(3), P<0.001]. Meanwhile, the expression levels of p-STAT3 and p-Akt in siRNA-PD-L1 group were decreased (P<0.05), while the expression levels of p-ERK1/2 and β-catenin did not change significantly (P>0.05). Conclusion: Elevated PD-L1 expression in CD133(+) LCSLC is crucial to maintain stemness and promotes the tumor biological function of LCSLC.
Humans
;
Animals
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
B7-H1 Antigen/metabolism*
;
Ligands
;
Liver Neoplasms/pathology*
;
RNA, Small Interfering/metabolism*
;
Neoplastic Stem Cells/physiology*
;
Cell Line, Tumor
;
Cell Proliferation
4.Casticin Attenuates Stemness in Cervical Cancer Stem-Like Cells by Regulating Activity and Expression of DNMT1.
Xue-Li WANG ; Xiao-Zheng CAO ; Dao-Yuan WANG ; Ye-Bei QIU ; Kai-Yu DENG ; Jian-Guo CAO ; Shao-Qiang LIN ; Yong XU ; Kai-Qun REN
Chinese journal of integrative medicine 2023;29(3):224-232
OBJECTIVE:
To explore whether casticin (CAS) suppresses stemness in cancer stem-like cells (CSLCs) obtained from human cervical cancer (CCSLCs) and the underlying mechanism.
METHODS:
Spheres from HeLa and CaSki cells were used as CCSLCs. DNA methyltransferase 1 (DNMT1) activity and mRNA levels, self-renewal capability (Nanog and Sox2), and cancer stem cell markers (CD133 and CD44), were detected by a colorimetric DNMT activity/inhibition assay kit, quantitative real-time reverse transcription-polymerase chain reaction, sphere and colony formation assays, and immunoblot, respectively. Knockdown and overexpression of DNMT1 by transfection with shRNA and cDNA, respectively, were performed to explore the mechanism for action of CAS (0, 10, 30, and 100 nmol/L).
RESULTS:
DNMT1 activity was increased in CCSLCs compared with HeLa and CaSki cells (P<0.05). In addition, HeLa-derived CCSLCs transfected with DNMT1 shRNA showed reduced sphere and colony formation abilities, and lower CD133, CD44, Nanog and Sox2 protein expressions (P<0.05). Conversely, overexpression of DNMT1 in HeLa cells exhibited the oppositive effects. Furthermore, CAS significantly reduced DNMT1 activity and transcription levels as well as stemness in HeLa-derived CCSLCs (P<0.05). Interestingly, DNMT1 knockdown enhanced the inhibitory effect of CAS on stemness. As expected, DNMT1 overexpression reversed the inhibitory effect of CAS on stemness in HeLa cells.
CONCLUSION
CAS effectively inhibits stemness in CCSLCs through suppression of DNMT1 activation, suggesting that CAS acts as a promising preventive and therapeutic candidate in cervical cancer.
Female
;
Humans
;
Cell Line, Tumor
;
HeLa Cells
;
Neoplastic Stem Cells/metabolism*
;
RNA, Small Interfering/metabolism*
;
Uterine Cervical Neoplasms/metabolism*
5.Deubiquitinating enzyme MINDY1 is an independent risk factor for the maintenance of stemness and poor prognosis in liver cancer cells.
Bo Lin XIA ; Ke Wei LIU ; Hong Xia HUANG ; Mei Mei SHEN ; Bin WANG ; Jian GAO
Chinese Journal of Hepatology 2023;31(5):518-523
Objective: To explore the key deubiquitinating enzymes that maintain the stemness of liver cancer stem cells and provide new ideas for targeted liver cancer therapy. Methods: The high-throughput CRISPR screening technology was used to screen the deubiquitinating enzymes that maintain the stemness of liver cancer stem cells. RT-qPCR and Western blot were used to analyze gene expression levels. Stemness of liver cancer cells was detected by spheroid-formation and soft agar colony formation assays. Tumor growth in nude mice was detected by subcutaneous tumor-bearing experiments. Bioinformatics and clinical samples were examined for the clinical significance of target genes. Results: MINDY1 was highly expressed in liver cancer stem cells. The expression of stem markers, the self-renewal ability of cells, and the growth of transplanted tumors were significantly reduced and inhibited after knocking out MINDY1, and its mechanism of action may be related to the regulation of the Wnt signaling pathway. The expression level of MINDY1 was higher in liver cancer tissues than that in adjacent tumors, which was closely related to tumor progression, and its high expression was an independent risk factor for a poor prognosis of liver cancer. Conclusion: The deubiquitinating enzyme MINDY1 promotes stemness in liver cancer cells and is one of the independent predictors of poor prognosis in liver cancer.
Animals
;
Mice
;
Cell Line, Tumor
;
Mice, Nude
;
Liver Neoplasms/pathology*
;
Prognosis
;
Deubiquitinating Enzymes/metabolism*
;
Neoplastic Stem Cells/pathology*
;
Gene Expression Regulation, Neoplastic
6.Lung Cancer Stem-like Cells and Drug Resistance.
Zhenhua PAN ; Hongyu LIU ; Jun CHEN
Chinese Journal of Lung Cancer 2022;25(2):111-117
Lung cancer remains the leading cause of cancer-related death world-wide. Therapy resistance and relapse are considered major reasons contributing to the poor survival rates of lung cancer. Accumulated evidences have demonstrated that a small subpopulation of stem-like cells existed within lung cancer tissues and cell lines, possessing the abilities of self-renewal, multipotent differentiation and unlimited proliferation. These lung cancer stem-like cells (LCSCs) can generate tumors with high effeciency in vivo, survive cytotoxic therapies, and eventually lead to therapy resistance and recurrence. In this review, we would like to present recent knowledges on LCSCs, including the origins where they come from, the molecular features to identify them, and key mechanisms for them to survive and develop resistance, in order to provide a better view for targeting them in future clinic.
.
Cell Line, Tumor
;
Drug Resistance
;
Drug Resistance, Neoplasm
;
Humans
;
Lung/pathology*
;
Lung Neoplasms/metabolism*
;
Neoplasm Recurrence, Local
;
Neoplastic Stem Cells/pathology*
7.LncRNA GAS5 enhances tumor stem cell-like medicated sensitivity of paclitaxel and inhibits epithelial-to-mesenchymal transition by targeting the miR-18a-5p/STK4 pathway in prostate cancer.
Ting-Ting LU ; Xia TAO ; Hua-Lei LI ; Ling GAI ; Hua HUANG ; Feng LI
Asian Journal of Andrology 2022;24(6):643-652
The onset of prostate cancer (PCa) is often hidden, and recurrence and metastasis are more likely to occur due to chemotherapy resistance. Herein, we identified downregulated long noncoding RNA (lncRNA) growth arrest-specific 5 (GAS5) in PCa that was associated with metastasis and paclitaxel resistance. GAS5 acted as a tumor suppressor in suppressing the proliferation and metastasis of paclitaxel-resistant PCa cells. GAS5 overexpression in vivo inhibited the tumor growth of xenografts and elevated PCa sensitivity to paclitaxel. Combination of GAS5 and paclitaxel treatment showed great potential in PCa treatment. Moreover, mechanistic analysis revealed a novel regulatory network of GAS5/miR-18a-5p/serine/threonine kinase 4 (STK4) that inhibits epithelial-to-mesenchymal transition (EMT) and enhances tumor stem cell-like-mediated sensitivity to paclitaxel in PCa. These findings provide a novel direction for the development of a potential adjunct to cancer chemotherapy that aims to improve the sensitivity of chemotherapy drugs in PCa.
Humans
;
Male
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
MicroRNAs/metabolism*
;
Neoplastic Stem Cells
;
Paclitaxel/therapeutic use*
;
Prostatic Neoplasms/genetics*
;
Protein Serine-Threonine Kinases/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Epithelial-Mesenchymal Transition
8.Sijunzi Decoction Inhibits Stemness by Suppressing β-Catenin Transcriptional Activity in Gastric Cancer Cells.
Yue-Jun LI ; Lin-Li LIAO ; Pei LIU ; Ping TANG ; Hong WANG ; Qing-Hua PENG
Chinese journal of integrative medicine 2022;28(8):702-710
OBJECTIVE:
To investigate a previously uncharacterized function of Sijunzi Decoction (SJZD) in inhibition of gastric cancer stem cells (GCSCs).
METHODS:
MKN74 and MKN45, two CD44 positive gastric cancer cell lines with stem cell properties were used. The cells were divided into 2 groups. Treatment group was treated with SJZD (1-5 mg/mL) for indicated time (48 h-14 days). The control group was treated with equal volume of phosphate buffered saline. Cell Counting Assay Kit-8 were used to measure cell viability. Spheroid colony formation and GCSCs marker expression were performed to determine GCSCs stemness. Cell fractionation and chromatin immunoprecipitation assays were used to assess the distribution and DNA-binding activity of β-catenin after SJZD treatment, respectively.
RESULTS:
SJZD treatment repressed cell growth and induced apoptosis in MKN74 and MKN45 cell lines (P<0.05). Moreover, SJZD dramatically inhibited formation of spheroid colony and expression of GCSC markers in GC cells (P<0.05). Mechanistically, SJZD reduced nuclear accumulation and DNA binding activity of β-catenin (P<0.05), the key regulator for maintaining CSC stemness.
CONCLUSION
SJZD inhibits GCSCs by attenuating the transcriptional activity of β-catenin.
Cell Line, Tumor
;
DNA/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Neoplastic Stem Cells/metabolism*
;
Stomach Neoplasms/genetics*
;
beta Catenin/metabolism*
9.Targeted killing of CD133+ lung cancer stem cells using paclitaxel-loaded PLGA-PEG nanoparticles with CD133 aptamers.
Li Ying PANG ; Xiao Long HUANG ; Ling Ling ZHU ; Han Yan XIAO ; Meng Yu LI ; Hui Lin GUAN ; Jie GAO ; Hong JIN
Journal of Southern Medical University 2022;42(1):26-35
OBJECTIVE:
To construct a polylactic acid-glycolic acid-polyethylene glycol (PLGA-PEG) nanocarrier (N-Pac-CD133) coupled with a CD133 nucleic acid aptamer carrying paclitaxel for eliminating lung cancer stem cells (CSCs).
METHODS:
Paclitaxel-loaded N-Pac-CD133 was prepared using the emulsion/solvent evaporation method and characterized. CD133+ lung CSCs were separated by magnetic bead separation and identified for their biological behaviors and gene expression profile. The efficiency of paclitaxel-loaded N-Pac-CD133 for targeted killing of lung cancer cells was assessed in vitro. SCID mice were inoculated with A549 cells and received injections of normal saline, empty nanocarrier linked with CD133 aptamer (N-CD133), paclitaxel, paclitaxel-loaded nanocarrier (N-Pac) or paclitaxel-loaded N-Pac-CD133 (n=8, 5 mg/kg paclitaxel) on days 10, 15 and 20, and the tumor weight and body weight of the mice were measured on day 40.
RESULTS:
Paclitaxel-loaded N-Pac-CD133 showed a particle size of about 100 nm with a high encapsulation efficiency (>80%) and drug loading rate (>8%), and was capable of sustained drug release within 48 h. The CD133+ cell population in lung cancer cells showed the characteristic features of lung CSCs, including faster growth rate (30 days, P=0.001) and high expressions of tumor stem cell markers OV6(P < 0.001), CD133 (P=0.001), OCT3/4 (P=0.002), EpCAM (P=0.04), NANOG (P=0.005) and CD44 (P=0.02). Compared with N-Pac and free paclitaxel, paclitaxel-loaded N-Pac-CD133 showed significantly enhanced targeting ability and cytotoxicity against lung CSCs in vitro (P < 0.001) and significantly reduced the formation of tumor spheres (P < 0.001). In the tumor-bearing mice, paclitaxel-loaded N-Pac-CD133 showed the strongest effects in reducing the tumor mass among all the treatments (P < 0.001).
CONCLUSION
CD133 aptamer can promote targeted delivery of paclitaxel to allow targeted killing of CD133+ lung CSCs. N-Pac-CD133 loaded with paclitaxel may provide an effective treatment for lung cancer by targeting the lung cancer stem cells.
Animals
;
Cell Line, Tumor
;
Drug Carriers
;
Lung
;
Mice
;
Mice, SCID
;
Nanoparticles
;
Neoplasms
;
Neoplastic Stem Cells
;
Paclitaxel/pharmacology*
;
Polyethylene Glycols/pharmacology*
10.Advances in research of Musashi2 in solid tumors.
Ying Gui YANG ; Min ZHAO ; Teng Teng DING ; Chu Ping NI ; Qing You ZHENG ; Xin LI
Journal of Southern Medical University 2022;42(3):448-456
RNA binding protein (RBP) plays a key role in gene regulation and participate in RNA translation, modification, splicing, transport and other important biological processes. Studies have shown that abnormal expression of RBP is associated with a variety of diseases. The Musashi (Msi) family of mammals is an evolutionarily conserved and powerful RBP, whose members Msi1 and Msi2 play important roles in the regulation of stem cell activity and tumor development. The Msi family members regulate a variety of biological processes by binding and regulating mRNA translation, stability and downstream cell signaling pathways, and among them, Msi2 is closely related to embryonic growth and development, maintenance of tumor stem cells and development of hematological tumors. Accumulating evidence has shown that Msi2 also plays a crucial role in the development of solid tumors, mainly by affecting the proliferation, invasion, metastasis and drug resistance of tumors, involving Wnt/β-catenin, TGF-β/SMAD3, Akt/mTOR, JAK/STAT, Numb and their related signaling pathways (Notch, p53, and Hedgehog pathway). Preclinical studies of Msi2 gene as a therapeutic target for tumor have achieved preliminary results. This review summarizes the molecular structure, physiological function, role of Msi2 in the development and progression of various solid tumors and the signaling pathways involved.
Animals
;
Hedgehog Proteins
;
Mammals/metabolism*
;
Neoplasms/genetics*
;
Neoplastic Stem Cells
;
RNA-Binding Proteins/metabolism*
;
Signal Transduction

Result Analysis
Print
Save
E-mail