1.Research progress on circulating tumor DNA as a biomarker for minimal residual disease in solid tumors.
Chinese Journal of Contemporary Pediatrics 2023;25(10):1072-1077
Circulating tumor DNA (ctDNA) is emerging as a novel biomarker for tumor evaluation, offering advantages such as high sensitivity and specificity, minimal invasiveness, and absence of radiation. Currently, various techniques including gene sequencing and PCR are employed for ctDNA detection. The utilization of ctDNA for monitoring minimal residual disease (MRD) enables comprehensive assessment of tumor status and early identification of tumor recurrence, achieving a remarkable detection sensitivity of 0.01%. Therefore, ctDNA holds promise as a biomarker for early diagnosis, treatment response monitoring, and prognosis prediction in solid tumors. This article reviews the commonly used methods for detecting ctDNA and their advantages in evaluating tumor MRD and guiding clinical diagnosis and treatment.
Humans
;
Circulating Tumor DNA/genetics*
;
Neoplasm, Residual/genetics*
;
Biomarkers, Tumor/genetics*
;
Neoplasm Recurrence, Local
;
Prognosis
2.Establishment and validation of a multigene model to predict the risk of relapse in hormone receptor-positive early-stage Chinese breast cancer patients.
Jiaxiang LIU ; Shuangtao ZHAO ; Chenxuan YANG ; Li MA ; Qixi WU ; Xiangzhi MENG ; Bo ZHENG ; Changyuan GUO ; Kexin FENG ; Qingyao SHANG ; Jiaqi LIU ; Jie WANG ; Jingbo ZHANG ; Guangyu SHAN ; Bing XU ; Yueping LIU ; Jianming YING ; Xin WANG ; Xiang WANG
Chinese Medical Journal 2023;136(2):184-193
BACKGROUND:
Breast cancer patients who are positive for hormone receptor typically exhibit a favorable prognosis. It is controversial whether chemotherapy is necessary for them after surgery. Our study aimed to establish a multigene model to predict the relapse of hormone receptor-positive early-stage Chinese breast cancer after surgery and direct individualized application of chemotherapy in breast cancer patients after surgery.
METHODS:
In this study, differentially expressed genes (DEGs) were identified between relapse and nonrelapse breast cancer groups based on RNA sequencing. Gene set enrichment analysis (GSEA) was performed to identify potential relapse-relevant pathways. CIBERSORT and Microenvironment Cell Populations-counter algorithms were used to analyze immune infiltration. The least absolute shrinkage and selection operator (LASSO) regression, log-rank tests, and multiple Cox regression were performed to identify prognostic signatures. A predictive model was developed and validated based on Kaplan-Meier analysis, receiver operating characteristic curve (ROC).
RESULTS:
A total of 234 out of 487 patients were enrolled in this study, and 1588 DEGs were identified between the relapse and nonrelapse groups. GSEA results showed that immune-related pathways were enriched in the nonrelapse group, whereas cell cycle- and metabolism-relevant pathways were enriched in the relapse group. A predictive model was developed using three genes ( CKMT1B , SMR3B , and OR11M1P ) generated from the LASSO regression. The model stratified breast cancer patients into high- and low-risk subgroups with significantly different prognostic statuses, and our model was independent of other clinical factors. Time-dependent ROC showed high predictive performance of the model.
CONCLUSIONS
A multigene model was established from RNA-sequencing data to direct risk classification and predict relapse of hormone receptor-positive breast cancer in Chinese patients. Utilization of the model could provide individualized evaluation of chemotherapy after surgery for breast cancer patients.
Humans
;
Female
;
Breast Neoplasms/genetics*
;
East Asian People
;
Neoplasm Recurrence, Local/genetics*
;
Breast
;
Algorithms
;
Chronic Disease
;
Prognosis
;
Tumor Microenvironment
3.Identification of key molecules in miRNA-mRNA regulatory network associated with high-grade serous ovarian cancer recurrence using bioinformatic analysis.
Pan Yang ZHANG ; Ming Mei HE ; Yuan Yuan ZENG ; Xiong Wei CAI
Journal of Southern Medical University 2023;43(1):8-16
OBJECTIVE:
To investigate the correlation of the potential functional microRNA (miRNA)-mRNA regulatory network with recurrence of high-grade serous ovarian carcinoma (HGSOC) and its biological significance.
METHODS:
This study was performed based on the data of 354 patients with HGSOC from the Cancer Genome Atlas database. In these patients, HGSOC was divided into different subtypes based on the pathways identified by GO analysis, and the correlations of the subtypes with HGSOC recurrence and differentially expressed miRNAs and mRNAs were assessed. Two relapse-related datasets were identified using the Gene Set Enrichment (GSE) database, from which the differentially expressed miRNAs were identified by intersection with the TCGA data. The target genes of these miRNAs were predicted using miRWalk 2.0 database, and these common differentially expressed miRNAs and mRNAs were used to construct the key miRNA-mRNA network associated with HGSOC recurrence. The expression of miR-506-3p and SNAI2 in two ovarian cancer cell lines was detected using RT-qPCR and Western blotting, and their targeted binding was verified using a double luciferase assay. The effect of miR-506-3p expression modulation on ovarian cancer cell migration was detected using scratch assay and Transwell assay.
RESULTS:
We screened 303 GO terms of HGSOC-related pathways and identified two HGSOC subtypes (C1 and C2). The subtype C1 was associated with a significantly higher recurrence rate than C2. The differentially expressed genes between C1 and C2 subtypes were mainly enriched in epithelial-mesenchymal transition (EMT). Five miRNAs were identified as potential regulators of EMT, and a total of 41 target genes were found to be involved in the differential expressions of EMT pathway between C1 and C2 subtypes. The key miRNA-mRNA network associated with HGSOC recurrence was constructed based on these 5 miRNAs and 41 mRNAs. MiR-506-3p was confirmed to bind to SNAI2, and up-regulation of miR-506-3p significantly inhibited SNAI2 expression and reduced migration and invasion of SKOV3 and CAOV3 cells (P < 0.05), while miR-506-3p knockdown produced the opposite effects (P < 0.05).
CONCLUSION
MiR-506-3p and SNAI2 are the key molecules associated with HGSOC recurrence. MiR-506-3p may affect EMT of ovarian cancer cells by regulating cell migration and invasion via SNAI2, and its expression level has predictive value for HGSOC recurrence.
Humans
;
Female
;
MicroRNAs/genetics*
;
Neoplasm Recurrence, Local/genetics*
;
Ovarian Neoplasms/genetics*
;
Computational Biology
4.Thoracic SMARCA4-deficient undifferentiated tumor-pathological diagnosis and combined immune checkpoint inhibitor treatment.
Yan XIONG ; Bo ZHANG ; Li Gong NIE ; Shi Kai WU ; Hu ZHAO ; Dong LI ; Ji Ting DI
Journal of Peking University(Health Sciences) 2023;55(2):351-356
We explored clinicopathological features and treatment strategies for thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT). Thoracic SMARCA4-UT is a new entity recently acknowledged in the 2021 edition of World Health Organization Classification of Thoracic Tumors, and doctors are relatively unfamiliar with its diagnosis, treatment, and prognosis. Taking a case of SMARCA4-UT treated in Peking University First Hospital as an example, this multi-disciplinary discussion covered several hot issues on diagnosing and treating thoracic SMARCA4-UT, including histological features, immu- nohistochemical and molecular phenotype, immune checkpoint inhibitor (ICI) therapy, and pathological assessment of neoadjuvant therapy response. The patient was an older man with a long history of smoking and was admitted due to a rapidly progressing solid tumor in the lower lobe of the right lung. Histologically, tumor cells were epithelioid, undifferentiated, diffusely positive for CD34, and partially positive for SALL4.The expression of BRG1 protein encoded by SMARCA4 gene was lost in all of tumor cells, and next-generation sequencing(NGS)confirmed SMARCA4 gene mutation (c.2196T>G, p.Y732Ter). The pathological diagnosis reached as thoracic SMARCA4-UT, and the preoperative TNM stage was T1N2M0 (ⅢA). Tumor proportion score (TPS) detected by immunohistochemistry of programmed cell death 1-ligand 1 (PD-L1, clone SP263) was 2%. Tumor mutation burden (TMB) detected by NGS of 1 021 genes was 16. 3/Mb. Microsatellite detection showed the tumor was microsatellite stable (MSS). Neo-adjuvant therapy was implemented with the combined regimen of chemotherapy and ICI. Right lower lobectomy was performed through thoracoscopy after the two weeks' neoadjuvant. The pathologic assessment of lung tumor specimens after neoadjuvant therapy revealed a complete pathological response (CPR). The post-neoadjuvant tumor TNM stage was ypT0N0M0. Then, five cycles of adjuvant therapy were completed. Until October 2022, neither tumor recurrence nor metastasis was detected, and minimal residual disease (MRD) detection was negative. At present, it is believed that if BRG1 immunohistochemical staining is negative, regardless of whether SMARCA4 gene mutation is detected, it should be classified as SMARCA4-deficient tumors. SMARCA4-deficient tumors include a variety of carcinomas and sarcomas. The essential criteria for diagnosing SMARCA4-UT includes loss of BRG1 expression, speci-fic histological morphology, and exclude other common thoracic malignant tumors with SMARCA4-deficiency, such as squamous cell carcinoma, adenocarcinoma and large cell carcinoma. SMARCA4-UT is a very aggressive malignant tumor with a poor prognosis. It has almost no targeted therapy mutations, and little response to chemotherapy, but ICI is currently the only effective drug. The successful diagnosis and treatment for this case of SMARCA4-UT should enlighten significance for various kinds of SMARCA4-deficient tumors.
Humans
;
Immune Checkpoint Inhibitors
;
Neoplasm Recurrence, Local
;
Lung Neoplasms/genetics*
;
Thoracic Neoplasms/pathology*
;
Adenocarcinoma
;
DNA Helicases
;
Nuclear Proteins
;
Transcription Factors
5.Effects of C10orf10 on growth and prognosis of glioma under hypoxia.
Yuanbing CHEN ; Miao TANG ; Hui LI ; Jun HUANG
Journal of Central South University(Medical Sciences) 2023;48(4):499-507
OBJECTIVES:
Glioma is the most common malignant tumor in the central nervous system, and the hypoxic microenvironment is prevalent in solid tumors. This study aims to investigate the up-regulation of genes under the condition of hypoxia and their roles in glioma growth, as well as their impact on glioma prognosis.
METHODS:
The hypoxia-related dataset with glioma was screened in the Gene Expression Omnibus database (GEO), and the differentially expressed genes were analyzed between hypoxia and normoxia through bioinformatics, and chromosome 10 open reading frame 10 (C10orf10) was verified and screened in hypoxia-treated cells through real-time PCR and Western blotting. The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets were downloaded to analyze the mRNA expression of C10orf10 in different grades of glioma and its impact on prognosis. The glioma specimens and follow-up data of 68 gliomas who underwent surgical treatment in Xiangya Hospital of Central South University from March 2017 to January 2021 were collected, and real-time PCR was used to detect the mRNA expression of C10orf10 in different grades of glioma, and the Kaplan-Meier method was used to analyze the relationship between the expression C10orf10 and prognosis. The glioma cells, which could interfere the expression of C10orf10, were constructed, and the effect of C10orf10 on the proliferation of glioma cells was evaluated by cell counting kit-8 (CCK-8) and colony formation assays.
RESULTS:
Compared with the condition of normoxia, the expression levels of C10orf10 mRNA and protein were significantly up-regulated in glioma cells under hypoxia (P<0.001), and the mRNA expression level of C10orf10 in glioma tissues was up-regulated with the increase of WHO grade in glioma (P<0.001). Based on Kaplan-Meier survival analysis, the higher the mRNA expression level of C10orf10 was, the shorter the survival time of the patient was (P<0.05). And the expression of C10orf10 mRNA was higher in recurrent gliomas than that in primary gliomas in the CGGA database (P<0.001). Knockdown of C10orf10 could significantly inhibit the growth of glioma cells both under hypoxia and normoxia (both P<0.001).
CONCLUSIONS
The expression level of C10orf10 can promote the proliferation and prognosis of glioma, which is expected to become a prognostic marker and therapeutic target for glioma.
Humans
;
Central Nervous System
;
Glioma/genetics*
;
Hypoxia
;
Neoplasm Recurrence, Local
;
Prognosis
;
Tumor Microenvironment
6.Effect of CXCR4 on the Treatment Response and Prognosis of Carfilzomib in Multiple Myeloma.
Yu-Ye SHI ; Qiang HOU ; Hong TAO ; Shan-Dong TAO ; Yue CHEN ; Zheng-Mei HE ; Bang-He DING ; Chun-Ling WANG ; Liang YU
Journal of Experimental Hematology 2022;30(2):455-460
OBJECTIVE:
To explore the effect of CXCR4 on the treatment response and prognosis of Carfilzomib (CFZ) in multiple myeloma.
METHODS:
Dataset GSE69078 based on microarray data from two CFZ-resistant MM cell lines and their corresponding parental cell lines (KMS11-KMS11/CFZ and KMS34-KMS34/CFZ) were downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified, and Protein-protein interaction (PPI) network was established to identify the key genes involved in CFZ resistance acquisition. Finally, the prognostic roles of the CFZ risistance key genes in MM using MMRF-CoMMpass data study was verified.
RESULTS:
44 up-regulated and 46 down-regulated DEGs were identified. Top 10 hub genes (CCND1, CXCR4, HGF, PECAM1, ID1, HEY1, TCF4, HIST1H4J, HIST1H2BD and HIST1H2BH) were identified via Protein-protein interaction (PPI) network analysis. The CoMMpass data showed that high CXCR4 expression showed correlation to relative higher relapse and progress rates and the overall survival was significant decreased in high CXCR4 patients (P=0.013).
CONCLUSION
CXCR4 perhaps plays a crucial role in CFZ acquired resistance, which might help identifying potential CFZ-sensitive patients before treatment and providing a new therapeutic target in CFZ-resistant MM.
Histones
;
Humans
;
Multiple Myeloma/genetics*
;
Neoplasm Recurrence, Local
;
Oligopeptides/therapeutic use*
;
Prognosis
;
Receptors, CXCR4
7.Mechanisms of microRNA action in rectal cancer radiotherapy.
Lili ZHU ; Mojin WANG ; Na CHEN ; Yujie ZHANG ; Tao XU ; Wen ZHUANG ; Shuomeng XIAO ; Lei DAI
Chinese Medical Journal 2022;135(17):2017-2025
Preoperative neoadjuvant chemoradiotherapy, combined with total mesorectal excision, has become the standard treatment for advanced localized rectal cancer (RC). However, the biological complexity and heterogeneity of tumors may contribute to cancer recurrence and metastasis in patients with radiotherapy-resistant RC. The identification of factors leading to radioresistance and markers of radiosensitivity is critical to identify responsive patients and improve radiotherapy outcomes. MicroRNAs (miRNAs) are small, endogenous, and noncoding RNAs that affect various cellular and molecular targets. miRNAs have been shown to play important roles in multiple biological processes associated with RC. In this review, we summarized the signaling pathways of miRNAs, including apoptosis, autophagy, the cell cycle, DNA damage repair, proliferation, and metastasis during radiotherapy in patients with RC. Also, we evaluated the potential role of miRNAs as radiotherapeutic biomarkers for RC.
Humans
;
MicroRNAs/metabolism*
;
Neoplasm Recurrence, Local
;
Rectal Neoplasms/pathology*
;
Neoadjuvant Therapy
;
Radiation Tolerance/genetics*
8.Comprehensive analysis identifies as a critical prognostic prediction gene in breast cancer.
Ting HU ; Xu WANG ; Yun XIA ; Lu WU ; Yuxi MA ; Rui ZHOU ; Yanxia ZHAO
Chinese Medical Journal 2022;135(18):2218-2231
BACKGROUND:
Aurora kinases (AURKs) family plays a vital role not only in cell division but also in tumorigenesis. However, there are still rare systematic analyses of the diverse expression patterns and prognostic value of the AURKs family in breast cancer (BC). Systematic bioinformatics analysis was conducted to explore the biological role, prognostic value, and immunologic function of AURKs family in BC.
METHODS:
The expression, prognostic value, and clinical functions of AURKs family in BC were evaluated with several bioinformatics web portals: ONCOMINE Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter, cBioPortal, Metascape, GeneMANIA, and LinkedOmics; and the result was verified using human tissues.
RESULTS:
The expression of AURKA and AURKB were upregulated in BC in subgroup analyses based on tumor stage (all P < 0.05). BC patients with high AURKA and AURKB expression had a worse overall survival, relapse-free survival, and distant metastasis-free survival (all P < 0.05). Verification experiment revealed that AURKA and AURKB were upregulated in BC ( P < 0.05). AURKA and AURKB were specifically associated with several tumor-associated kinases (polo-like kinase 1 and cyclin-dependent kinase 1), miRNAs (miR-507 and miR-381), and E2F transcription factor 1. Moreover, AURKA and AURKB were correlated with immune cell infiltration. Functional enrichment analysis revealed that AURKA and AURKB were involved in the cell cycle signaling pathway, platinum drug resistance signaling pathway, ErbB signaling pathway, Hippo signaling pathway, and nucleotide-binding and oligomerization domain-like receptor signaling pathway.
CONCLUSIONS
Aurora kinases AURKA and AURKB could be employed as novel prognostic biomarkers or promising therapeutic targets for BC.
Humans
;
Female
;
Aurora Kinase A/metabolism*
;
Aurora Kinase B/metabolism*
;
Prognosis
;
Breast Neoplasms/genetics*
;
Neoplasm Recurrence, Local
;
MicroRNAs
9.Research Progress of Circulating Tumor DNA in Non-small Cell Lung Cancer.
Chinese Journal of Lung Cancer 2022;25(9):665-670
With the concept of "Precision Medicine" in malignant tumors popularized, many substances carrying valuable clinical information have emerged in the process of exploring the occurrence and development of tumors from a microscopic perspective. Circulating tumor DNA (ctDNA) is one of them. In various clinical stages of cancer, ctDNA exhibits rich diagnostic values including demonstrating the efficacy of treatment, predicting prognosis, and monitoring disease recurrence. This article mainly describes the application and research progress of ctDNA in different stages of clinical diagnosis and treatment of non-small cell lung cancer .
.
Biomarkers, Tumor/genetics*
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Circulating Tumor DNA/genetics*
;
Humans
;
Lung Neoplasms/genetics*
;
Mutation
;
Neoplasm Recurrence, Local
10.Consensus on Postoperative Recurrence Prediction of Non-small Cell Lung Cancer Based on Molecular Markers.
Chinese Journal of Lung Cancer 2022;25(10):701-714
Significant progress has been made in lung cancer screening, surgery, chemoradiation, targeted therapy, and immunotherapy recently. Surgical resection is the most important treatment for localized non-small cell lung cancer (NSCLC) so far, but there are still many patients who develop local recurrence or distant metastases within 5 years of surgery. Currently, the risk factors of recurrence in patients with NSCLC are mainly based on clinical and pathological features, which hardly identify patients at high risk of recurrence accurately. With the development of new detection technologies, a number of molecular markers that may have a predictive risk of recurrence in NSCLC have been discovered over the years. In order to summarize the molecular markers related to postoperative recurrence in NSCLC patients, we have formulated a consensus on the prediction of postoperative recurrence of NSCLC based on molecular markers. This consensus mainly focuses on the early stage NSCLC patients, discusses and summarizes the risk factors of disease recurrence from the molecular level. It is hoped that more and more valuable information can be provided for the management of patients, so as to provide more guidance for the perioperative management of the patients with early stage NSCLC in the future.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/surgery*
;
Lung Neoplasms/surgery*
;
Consensus
;
Early Detection of Cancer
;
Neoplasm Staging
;
Neoplasm Recurrence, Local/genetics*

Result Analysis
Print
Save
E-mail