1.Role of let-7 family in the invasion and metastasis of osteosarcoma.
Tong XIAO ; Xuan YANG ; Nanshan ZHONG ; Zhiwen LUO ; Jiaming LIU
Chinese Medical Journal 2023;136(1):120-122
2.Effects of miR-143 on the migration and invasion of osteosarcoma cells by regulating MMP-13 expression.
Bin LI ; Zhan-Peng LI ; Zhen-Gang LIAN
China Journal of Orthopaedics and Traumatology 2023;36(11):1075-1080
OBJECTIVE:
To explore the effect of miR-143 regulating matrix metalloproteinase(MMP)-13 expression on migration and invasion of osteosarcoma cells.
METHODS:
The mouse osteosarcoma cell line 143B cells were cultured in 96-well plates, and blank group, negative group, positive group, and intervention group were set up. Then, the blank group did no treatment 50 μg miR-143 mimic was added to positive group, negative group added equal mimic NC (control sequence of miR-143 mimic), the intervention group was added 50 μg miR-143 mimic and 10 μg MMP-13 protein, all groups continued to culture for 3 to 6 hours, and finally the serum was aspirated to treat for half an hour. The protein expressions of miR-143 and MMP-13 in each group were measured by fluorescence quantitative PCR experiment and Western blot experiment, respectively, and the invasion and migration abilities of cells were measured by Transwell and scratch experiments.
RESULTS:
The expression of MMP-13 protein in the positive group and the intervention group was significantly lower than that in the blank group, and the positive group was lower than the intervention group (P<0.05);The mean numbers of invasive cells in blank group, negative group, positive group and intervention group were (1 000.01±44.77), (959.25±46.32), (245.04±4.33), (634.06±33.78) cells/field, respectively;the scratch healing rate of the positive group and the intervention group was significantly lower than that of the blank group, and the positive group was lower than the intervention group (P<0.05).
CONCLUSION
MMP-13 is a target of miR-143, which can reduce the migration and invasion ability of osteosarcoma cells by inhibiting the expression of MMP-13.
Osteosarcoma/pathology*
;
MicroRNAs/genetics*
;
Matrix Metalloproteinase 13/genetics*
;
Neoplasm Invasiveness
;
Animals
;
Mice
;
Cell Line, Tumor
;
Cell Movement
3.Read-through circular RNA rt-circ-HS promotes hypoxia inducible factor 1α expression and renal carcinoma cell proliferation, migration and invasiveness.
Yun Yi XU ; Zheng Zheng SU ; Lin Mao ZHENG ; Meng Ni ZHANG ; Jun Ya TAN ; Ya Lan YANG ; Meng Xin ZHANG ; Miao XU ; Ni CHEN ; Xue Qin CHEN ; Qiao ZHOU
Journal of Peking University(Health Sciences) 2023;55(2):217-227
OBJECTIVE:
To identify and characterize read-through RNAs and read-through circular RNAs (rt-circ-HS) derived from transcriptional read-through hypoxia inducible factor 1α (HIF1α) and small nuclear RNA activating complex polypeptide 1 (SNAPC1) the two adjacent genes located on chromosome 14q23, in renal carcinoma cells and renal carcinoma tissues, and to study the effects of rt-circ-HS on biological behavior of renal carcinoma cells and on regulation of HIF1α.
METHODS:
Reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing were used to examine expression of read-through RNAs HIF1α-SNAPC1 and rt-circ-HS in different tumor cells. Tissue microarrays of 437 different types of renal cell carcinoma (RCC) were constructed, and chromogenic in situ hybridization (ISH) was used to investigate expression of rt-circ-HS in different RCC types. Small interference RNA (siRNA) and artificial overexpression plasmids were designed to examine the effects of rt-circ-HS on 786-O and A498 renal carcinoma cell proliferation, migration and invasiveness by cell counting kit 8 (CCK8), EdU incorporation and Transwell cell migration and invasion assays. RT-PCR and Western blot were used to exa-mine expression of HIF1α and SNAPC1 RNA and proteins after interference of rt-circ-HS with siRNA, respectively. The binding of rt-circ-HS with microRNA 539 (miR-539), and miR-539 with HIF1α 3' untranslated region (3' UTR), and the effects of these interactions were investigated by dual luciferase reporter gene assays.
RESULTS:
We discovered a novel 1 144 nt rt-circ-HS, which was derived from read-through RNA HIF1α-SNAPC1 and consisted of HIF1α exon 2-6 and SNAPC1 exon 2-4. Expression of rt-circ-HS was significantly upregulated in 786-O renal carcinoma cells. ISH showed that the overall positive expression rate of rt-circ-HS in RCC tissue samples was 67.5% (295/437), and the expression was different in different types of RCCs. Mechanistically, rt-circ-HS promoted renal carcinoma cell proliferation, migration and invasiveness by functioning as a competitive endogenous inhibitor of miR-539, which we found to be a potent post-transcriptional suppressor of HIF1α, thus promoting expression of HIF1α.
CONCLUSION
The novel rt-circ-HS is highly expressed in different types of RCCs and acts as a competitive endogenous inhibitor of miR-539 to promote expression of its parental gene HIF1α and thus the proliferation, migration and invasion of renal cancer cells.
Humans
;
Carcinoma, Renal Cell/pathology*
;
Cell Proliferation
;
Hypoxia
;
Kidney Neoplasms
;
MicroRNAs/genetics*
;
Neoplasm Invasiveness/genetics*
;
RNA, Circular/metabolism*
;
RNA, Small Interfering
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
4.Long non-coding RNA LOC101927476 inhibits invasion, migration, and proliferation of ovarian cancer cell lines.
Peng Fei ZHAO ; Ya Bing NAN ; Ya Ting WANG ; Bin LI ; Zhi Hua LIU
Chinese Journal of Oncology 2022;44(1):104-111
Objective: To investigate the expression of long non-coding RNA LOC101927476 (LncRNA LOC101927476) in ovarian cancer and its effect on the biological characteristics of ovarian cancer. Methods: Patients with ovarian cancer who underwent surgery in Cancer Hospital of Chinese Academy of Medical Sciences from 2018 to 2019 were selected. The expressions of LOC101927476 in ovarian cancer cells 3AO, OVCA429, TOV21G, A2780, SKOV3, as well as 22 primary tumor tissues and their matched metastatic tumor tissues were detected by real-time quantitative polymerase chain reaction (RT-PCR). Ovarian cancer transcriptome sequencing data from the TCGA database was used to verify the expressions of LOC101927476 and GATA4. 3AO and OVCA429 cells were infected with lentivirus plasmid containing OE-LOC101927476 and single guide RNA (sg-RNA) targeting LOC101927476, respectively. The effects of LOC101927476 on migration and invasion were detected by Transwell and wound healing assay. The effect of LOC101927476 on cell proliferation was detected by cell counting kit-8 (CCK-8) assay. Results: RT-PCR assay showed that 20 out of 22 patients had significantly lower expression of LOC101927476 in their metastatic tumors compared with primary tumors. Transwell assay showed that overexpression of LOC101927476 significantly inhibited the invasion and migration capacities of 3AO cells. The numbers of invading and migrating 3AO cells infected with OE-LOC101927476 lentivirus were (357±63) and (699±65), respectively, lower than (661±95) and (1 024±76) in OE-EV group (P<0.050). In contrast, the numbers of invading and migrating OVCA429 cells with LOC101927476 knockdown were (512±72) and (472±40), respectively, higher than (309±13) and (363±27) in sg-Control group (P<0.050). Wound healing assay results showed that after 48 hours, the percentage of scratch healing of 3AO cells in OE-LOC101927476 group was (10.86±0.63)%, significantly lower than (57.38±4.42)% of OE-EV group (P=0.009). After 24 hours, the percentage of scratch healing of OCVA429 cells in sg-LOC101927476 group was (59.98±1.34)%, significantly higher than (23.15±2.03)% of sg-Control group (P=0.004). CCK-8 assays showed that the OD value of 3AO cells in OE-LOC101927476 group was (2.07±0.08), significantly lower than (2.29±0.04) of OE-EV group (P=0.009). The OD value of OVCA429 cells in sg-LOC101927476 group was (2.13±0.03), significantly higher than (1.93±0.03) of sg-Control group (P=0.001). The relative expression of GATA4 in OE-LOC101927476 group was (1.86±0.25), significantly higher than 1.00 of OE-EV group (P=0.001). In patients with high expression of LncRNA LOC101927476, the expression level of GATA4 was (2.93±0.35), which was higher than (0.29±0.06) of LOC101927476 low expression group (P=0.001). Conclusion: LncRNA LOC101927476 can inhibit the invasion, migration and proliferation of ovarian cancer cells.
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Female
;
Humans
;
Neoplasm Invasiveness
;
Ovarian Neoplasms/genetics*
;
RNA, Long Noncoding/genetics*
5.The effect of HOXC10 gene on biological behaviors of glioma cells and mechanism in tumor microenvironment.
Wen Yi JIANG ; Qing Yang LEI ; Sha Sha LIU ; Li YANG ; Bo YANG ; Yi ZHANG
Chinese Journal of Oncology 2022;44(3):228-237
Objective: To study the effects of Homeobox C10 (HOXC10) on biological characteristics such as migration, invasion and proliferation of glioma cancer cells and to explore the role of HOXC10 gene in glioma microenvironment. Methods: The expression level of HOXC10 in high grade glioma (glioblastoma) and low grade glioma and its effect on patient survival were analyzed by using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Hoxc10-siRNA-1, HOXC10-siRNA-2 and siRNA negative control (NC) were transfected into U251 cells according to the operation instructions of HOXC10-siRNA transfection. 100 ng/ mL recombinant protein chemokine ligand 2 (reCCL2) was added into the transfection group, and was labeled as HOXC10-siRNA-1+ reCCL2 and HOXC10-siRNA-2+ reCCL2 groups. The expressions of HOXC10 mRNA and target protein in each group was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot. The proliferation ability of cells in each group was detected by cell counting kit 8 (CCK8) method. The migration ability of cells was detected by Transwell assay and Nick assay, and cell apoptosis was detected by flow cytometry. The expression of chemokines in each group was detected by multiple factors. Co-incubation assays were performed to determine the role of HOXC10 and chemokine ligand 2 (CCL2) in recruiting and polarizing tumor-associated macrophages (M2-type macrophages). Results: The median expression level of HOXC10 in high grade gliomas was 8.51, higher than 1.00 in low grade gliomas (P<0.001) in TCGA database. The median expression level of HOXC10 in high grade gliomas was 0.83, higher than 0.00 in low grade gliomas (P=0.002) in CGGA database. The 5-year survival rate of patients with high HOXC10 expression in TCGA database was 28.2%, lower than 78.7% of those with low HOXC10 expression (P<0.001), and the 5-year survival rate of patients with high HOXC10 expression in CGGA database was 20.3%, lower than 58.0% of those with low HOXC10 expression (P<0.001). The numbers of cell migration in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (45±3) and (69±4) respectively, lower than (159±3) in NC group (P<0.05). The cell mobility of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group at 48 hours were (15±2)% and (28±4)% respectively, lower than (80±5)% of NC group (P<0.05). The expressions of vimentin in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (141 740.00±34 024.56) and (94 655.00±5 687.97), N-cadherin were (76 810.00±14.14) and (94 254.00±701.45), β-catenin were (75 786.50±789.84) and (107 296.50±9 614.53), lower than (233 768.50±34 114.37), (237 154.50±24 715.50) and (192 449.50±24 178.10) of NC group (P<0.05). The A value of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.44±0.05) and (0.32±0.02) at 96 hours, lower than 0.92±0.12 of NC group (P<0.05). The apoptosis rates of HOXC10-siRNA-1 group and HOXC10 siRNA-2 group were (10.23±1.24)% and (13.81±2.16)%, higher than (4.60±0.07)% of NC group (P<0.05). The expression levels of CCL2 in U251 cells in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (271.63±44.27) and (371.66±50.21), lower than (933.93±29.84) in NC group (P<0.05). The expression levels of CCL5 (234.81±5.95 and 232.62±5.72), CXCL10 (544.13±48.14 and 500.87±15.65) and CXCL11 (215.75±15.30 and 176.18±16.49) in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were higher than those in NC group (9.98±0.71, 470.54±18.84 and 13.55±0.73, respectively, P<0.05). The recruited numbers of CD14(+) THP1 in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (159.33±1.15) and (170.67±1.15), respectively, lower than (360.00±7.81) in NC group (P<0.05), while addition of reCCL2 promoted the recruitment of CD14(+) THP1 cells (287.00±3.61 and 280.67±2.31 in HOXC10-siRNA-1+ reCCL2 group and HOXC10-siRNA-2+ reCCL2 group, respectively, P<0.05). The expressions level of M2-type macrophage-related gene TGF-β in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.30±0.02) and (0.28±0.02), respectively, lower than (1.06±0.10) in NC group (P<0.05). The expressions level of M1-related gene NOS2 in HOXC10-siRNA-1 and HOXC10-siRNA-2 were (11 413.95±1 911.85) and (5 894.00±945.21), respectively, higher than (13.39±4.32) in NC group (P<0.05). Conclusions: The expression of HOXC10 in glioma is high and positively correlated with the poor prognosis of glioma patients. Knockdown of HOXC10 can inhibit the proliferation, migration and metastasis of human glioma U251 cells. HOXC10 may play an immunosuppressive role in glioma microenvironment by promoting the expression of CCL2 and recruiting and polarizing tumor-associated macrophages (M2 macrophages).
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Genes, Homeobox
;
Glioma/pathology*
;
Homeodomain Proteins/metabolism*
;
Humans
;
Neoplasm Invasiveness/genetics*
;
Tumor Microenvironment
6.TSTA3 gene promotes esophageal cancer invasion through MAPK-ERK pathway and downstream MMP2/9.
En Wei XU ; Jie YANG ; Ling ZHANG
Chinese Journal of Pathology 2022;51(1):50-52
Carbohydrate Epimerases/metabolism*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Esophageal Neoplasms/genetics*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Ketone Oxidoreductases/metabolism*
;
MAP Kinase Signaling System
;
Matrix Metalloproteinase 2/genetics*
;
Matrix Metalloproteinase 9
;
Neoplasm Invasiveness/genetics*
7.Ziyin Huatan Recipe, a Chinese herbal compound, inhibits migration and invasion of gastric cancer by upregulating RUNX3 expression.
Shang-Jin SONG ; Xuan LIU ; Qing JI ; Da-Zhi SUN ; Li-Juan XIU ; Jing-Yu XU ; Xiao-Qiang YUE
Journal of Integrative Medicine 2022;20(4):355-364
OBJECTIVES:
Ziyin Huatan Recipe (ZYHT), a traditional Chinese medicine comprised of Lilii Bulbus, Pinelliae Rhizoma, and Hedyotis Diffusa, has shown promise in treating gastric cancer (GC). However, its potential mechanism has not yet been clearly addressed. This study aimed to predict targets and molecular mechanisms of ZYHT in treating GC by network pharmacology analysis and to explore the role of ZYHT in GC both in vitro and in vivo.
METHODS:
Targets and molecular mechanisms of ZYHT were predicted via network pharmacology analysis. The effects of ZYHT on the expression of metastasis-associated targets were further validated by Western blot and quantitative real-time polymerase chain reaction. To explore the specific molecular mechanisms of the effects of ZYHT on migration and invasion, the runt-related transcription factor 3 (RUNX3) gene was knocked out by clustered regularly interspaced short palindromic repeats/Cas9, and lentiviral vectors were transfected into SGC-7901 cells. Then lung metastasis model of GC in nude mice was established to explore the anti-metastasis effect of ZYHT. Western blot and immunohistochemistry were used to explore the impact of ZYHT on the expression of metastasis-related proteins with or without RUNX3 gene.
RESULTS:
The network pharmacology analysis showed that ZYHT might inhibit focal adhesion, migration, invasion and metastasis of GC. ZYHT inhibited the proliferation, migration and invasion of GC cells in vitro via regulating the expression of metastasis-associated targets. Knocking out RUNX3 almost completely reversed the cell phenotypes (migration and invasion) and protein expression levels elicited by ZYHT. In vivo studies showed that ZYHT inhibited the metastasis of GC cells to the lung and prolonged the survival time of the nude mice. Knocking out RUNX3 partly reversed the metastasis of GC cells to the lung and the protein expression levels elicited by ZYHT.
CONCLUSION
ZYHT can effectively inhibit the invasion and migration of GC in vitro and in vivo, and its molecular mechanism may relate to the upregulation of RUNX3 expression.
Animals
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
China
;
Gene Expression Regulation, Neoplastic
;
Mice
;
Mice, Nude
;
Neoplasm Invasiveness
;
Stomach Neoplasms/genetics*
8.MiR-125b-5 suppresses ovarian cancer cell migration and invasion by targeted downregulation of CD147.
Zhen HUANG ; Hao Ming SHEN ; Hong Yu DENG ; Li Sha SUN ; Bin QÜ
Journal of Southern Medical University 2022;42(9):1389-1396
OBJECTIVE:
To investigate whether miR-125b-5p regulates biological behaviors of ovarian cancer cells by targeted regulation of CD147 expression.
METHODS:
RT-qPCR was used to detect the expression of miR-125b-5p and CD147 mRNA in ovarian cancer tissues and cancer cell lines. SKOV3 cells transfected with miR-125b-5p mimic and HO8910 cells transfected with miR-125b-5p inhibitor were examined for changes in proliferation, migration and invasion using CCK-8 assay, colonyforming assay and Transwell assay. Starbase was used to predict the potential binding sites between miR-125b-5p and CD147, and double luciferase reporter gene assay was used to verify the targeting relationship. In SKOV3 cells, the effects of cotransfection with miR-125b-5p mimic and pcDNA3.1-CD147 (or pcDNA3.1) plasmid on cell proliferation, migration and invasion were assessed with CCK-8 assay and Transwell assay.
RESULTS:
The expression of miR-125b-5p was significantly lowered and that of CD147 was increased in both ovarian cancer tissues and ovarian cancer cell lines (P < 0.05). Overexpression of miR-125b-5p in SKOV3 cells resulted in significantly suppressed cell proliferation, migration and invasion, while downregulation of miR-125b-5p in HO8910 cells promoted cell proliferation, migration and invasion. Bioinformatic analysis predicted that miR-125b-5p binds to CD147, which was confirmed by luciferase reporter gene assay. RT-qPCR and Western blotting showed that miR-125b-5p negatively regulated CD147 expression (P < 0.05). In SKOV3 cells, the inhibitory effects of miR-125b-5p mimic on cell proliferation, invasion and migration were significantly attenuated by co-transfection of the cells with pcDNA3.1-CD147 plasmid.
CONCLUSION
miR-125b-5p inhibits the migration and invasion of ovarian cancer cells by negatively regulating the expression of CD147.
Basigin
;
Carcinoma, Ovarian Epithelial
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Down-Regulation
;
Female
;
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs/metabolism*
;
Neoplasm Invasiveness/genetics*
;
Ovarian Neoplasms/genetics*
;
RNA, Messenger/genetics*
;
Sincalide/metabolism*
9.Nur77 promotes invasion and migration of gastric cancer cells through the NF-κB/IL-6 pathway.
Wei LI ; Yong Kang SHI ; Yu Hua GUO ; Sheng Wang TIAN
Journal of Southern Medical University 2022;42(9):1410-1417
OBJECTIVE:
To analyze the association of Nur77 with overall survival of gastric cancer patients and investigate the role of Nur77 in invasion and migration of gastric cancer cells.
METHODS:
Oncomine database was used to analyze the expression of Nur77 in gastric cancer and gastric mucosa tissues, and the distribution characteristics of Nur77 protein between gastric cancer and normal tissues were compared using Human Protein Atlas. GEPIA2 was used to analyze the relationship of Nur77 expression and the patients' survival. The expression of Nur77 in gastric cancer cell lines GES-1, AGS and MKN-45 were detected by Western blotting. The regulatory interactions between IL-6 and Nur77 were verified by transfecting the cells with specific Nur-77 siRNA and Nur-77-overexpressing plasmid. The changes in migration ability of the cells following Nur-77 knockdown were assessed with scratch assay. The effect of Nur-77 overexpression or IL-6 knockdown, or their combination, on migration and invasion of the gastric cancer cells were examined using Transwell assay. The effect of Nur77 expression level on NF-κB/IL-6 pathway activation was analyzed using Western blotting.
RESULTS:
Oncomine database showed that gastric cancer tissues expressed a significantly higher level of Nur77 mRNA than normal tissues (P < 0.05). Nur77 expression was detected mostly in the nucleus, and a high Nur77 expression was associated with a poor survival outcome of the patients (P < 0.05). In gastric cancer cells, the high expression of Nur77 participated in the regulation of IL-6. Nur77 silencing significantly lowered the migration ability of the cells (P < 0.05), and IL-6 silencing significantly attenuated the enhanced migration caused by Nur77 overexpression (P < 0.05). Nur77 participates in the activation of NF-κB/IL-6 signaling pathway by regulating the expression of p-p65, p65, p-Stat3 and Stat3.
CONCLUSION
A high Nur77 expression is strongly correlated with a poor prognosis of gastric cancer patients. Nur77 promotes the invasion and migration of gastric cancer cells possibly by regulating the NF-κB/IL-6 signaling pathway.
Cell Line, Tumor
;
Cell Movement
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Interleukin-6/metabolism*
;
NF-kappa B/metabolism*
;
Neoplasm Invasiveness/genetics*
;
Nuclear Receptor Subfamily 4, Group A, Member 1
;
RNA, Messenger/metabolism*
;
RNA, Small Interfering/genetics*
;
Stomach Neoplasms/genetics*
10.CircPCSK5 is highly expressed in gastric cancer and promotes cancer cell proliferation, invasion and epithelial-mesenchymal transition.
Xue Liang ZUO ; Juan CAI ; Zhi Qiang CHEN ; Yan Na LI ; Dou Feng ZHANG
Journal of Southern Medical University 2022;42(10):1440-1451
OBJECTIVE:
To investigate the expression of circPCSK5 in gastric cancer (GC) and its role in regulation of the proliferation, invasion and epithelial-mesenchymal transition (EMT) of GC cells.
METHODS:
High-throughput sequencing was performed in 3 pairs of GC and adjacent gastric mucosa tissues to obtain the differential expression profile of circRNA. The expression of circPCSK5 was detected in 62 patients undergoing radical surgery for GC using RT-qPCR, and the correlation between circPCSK5 expression level and clinicopathological data of the patients was analyzed. The overall survival and disease-free survival of the patients were assessed with Kaplan-Meier survival analysis, and the independent risk factors affecting the patients' prognosis were analyzed using Cox proportional hazards regression model. The stability and subcellular localization of circPCSK5 were assessed using RNase R and actinomycin D assays, fluorescence in situ hybridization and nucleocytoplasmic separation assay. CCK-8 assay, EdU assay and Transwell assay were employed to examine the changes in proliferation, migration and invasion of GC cells with circPCSK5 knockdown or overexpression; Western blotting and RT-qPCR assays were used to detect the expression levels of EMT markers in the transfected cells.
RESULTS:
The expression of circPCSK5 was significantly upregulated in GC tissues and cells (P < 0.001, P < 0.01). The expression level of circPCSK5 was positively correlated with tumor size, vascular invasion, lymph node metastasis and AJCC stage of GC (P < 0.05). The overall survival and disease-free survival were significantly lower in GC patients with high circPCSK5 expression than in those with low circPCSK5 expression (P < 0.001). High circPCSK5 expression was an independent risk factor for a poor prognosis of GC patients (P < 0.05). Knockdown of circPCSK5 significantly inhibited the proliferation, migration and invasion of HGC27 cells (P < 0.01), increased the expressions of E-cadherin, and decreased the expression of N-cadherin and vimentin (P < 0.01). CircPCSK5 overexpression promoted the proliferation, migration and invasion of MKN45 cells (P < 0.01), reduced E-cadherin expression and increased N-cadherin and vimentin expressions (P < 0.01).
CONCLUSION
CircPCSK5 is highly expressed in GC and promotes the proliferation, invasion and EMT of GC cells, suggesting its potential as a prognostic biomarker and therapeutic target for GC.
Humans
;
Epithelial-Mesenchymal Transition/genetics*
;
Stomach Neoplasms/pathology*
;
Vimentin/metabolism*
;
Neoplasm Invasiveness/genetics*
;
In Situ Hybridization, Fluorescence
;
Cell Movement/genetics*
;
Gene Expression Regulation, Neoplastic
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cadherins/metabolism*

Result Analysis
Print
Save
E-mail