1.Effects of miR-143 on the migration and invasion of osteosarcoma cells by regulating MMP-13 expression.
Bin LI ; Zhan-Peng LI ; Zhen-Gang LIAN
China Journal of Orthopaedics and Traumatology 2023;36(11):1075-1080
OBJECTIVE:
To explore the effect of miR-143 regulating matrix metalloproteinase(MMP)-13 expression on migration and invasion of osteosarcoma cells.
METHODS:
The mouse osteosarcoma cell line 143B cells were cultured in 96-well plates, and blank group, negative group, positive group, and intervention group were set up. Then, the blank group did no treatment 50 μg miR-143 mimic was added to positive group, negative group added equal mimic NC (control sequence of miR-143 mimic), the intervention group was added 50 μg miR-143 mimic and 10 μg MMP-13 protein, all groups continued to culture for 3 to 6 hours, and finally the serum was aspirated to treat for half an hour. The protein expressions of miR-143 and MMP-13 in each group were measured by fluorescence quantitative PCR experiment and Western blot experiment, respectively, and the invasion and migration abilities of cells were measured by Transwell and scratch experiments.
RESULTS:
The expression of MMP-13 protein in the positive group and the intervention group was significantly lower than that in the blank group, and the positive group was lower than the intervention group (P<0.05);The mean numbers of invasive cells in blank group, negative group, positive group and intervention group were (1 000.01±44.77), (959.25±46.32), (245.04±4.33), (634.06±33.78) cells/field, respectively;the scratch healing rate of the positive group and the intervention group was significantly lower than that of the blank group, and the positive group was lower than the intervention group (P<0.05).
CONCLUSION
MMP-13 is a target of miR-143, which can reduce the migration and invasion ability of osteosarcoma cells by inhibiting the expression of MMP-13.
Osteosarcoma/pathology*
;
MicroRNAs/genetics*
;
Matrix Metalloproteinase 13/genetics*
;
Neoplasm Invasiveness
;
Animals
;
Mice
;
Cell Line, Tumor
;
Cell Movement
2.Role of let-7 family in the invasion and metastasis of osteosarcoma.
Tong XIAO ; Xuan YANG ; Nanshan ZHONG ; Zhiwen LUO ; Jiaming LIU
Chinese Medical Journal 2023;136(1):120-122
3.Read-through circular RNA rt-circ-HS promotes hypoxia inducible factor 1α expression and renal carcinoma cell proliferation, migration and invasiveness.
Yun Yi XU ; Zheng Zheng SU ; Lin Mao ZHENG ; Meng Ni ZHANG ; Jun Ya TAN ; Ya Lan YANG ; Meng Xin ZHANG ; Miao XU ; Ni CHEN ; Xue Qin CHEN ; Qiao ZHOU
Journal of Peking University(Health Sciences) 2023;55(2):217-227
OBJECTIVE:
To identify and characterize read-through RNAs and read-through circular RNAs (rt-circ-HS) derived from transcriptional read-through hypoxia inducible factor 1α (HIF1α) and small nuclear RNA activating complex polypeptide 1 (SNAPC1) the two adjacent genes located on chromosome 14q23, in renal carcinoma cells and renal carcinoma tissues, and to study the effects of rt-circ-HS on biological behavior of renal carcinoma cells and on regulation of HIF1α.
METHODS:
Reverse transcription-polymerase chain reaction (RT-PCR) and Sanger sequencing were used to examine expression of read-through RNAs HIF1α-SNAPC1 and rt-circ-HS in different tumor cells. Tissue microarrays of 437 different types of renal cell carcinoma (RCC) were constructed, and chromogenic in situ hybridization (ISH) was used to investigate expression of rt-circ-HS in different RCC types. Small interference RNA (siRNA) and artificial overexpression plasmids were designed to examine the effects of rt-circ-HS on 786-O and A498 renal carcinoma cell proliferation, migration and invasiveness by cell counting kit 8 (CCK8), EdU incorporation and Transwell cell migration and invasion assays. RT-PCR and Western blot were used to exa-mine expression of HIF1α and SNAPC1 RNA and proteins after interference of rt-circ-HS with siRNA, respectively. The binding of rt-circ-HS with microRNA 539 (miR-539), and miR-539 with HIF1α 3' untranslated region (3' UTR), and the effects of these interactions were investigated by dual luciferase reporter gene assays.
RESULTS:
We discovered a novel 1 144 nt rt-circ-HS, which was derived from read-through RNA HIF1α-SNAPC1 and consisted of HIF1α exon 2-6 and SNAPC1 exon 2-4. Expression of rt-circ-HS was significantly upregulated in 786-O renal carcinoma cells. ISH showed that the overall positive expression rate of rt-circ-HS in RCC tissue samples was 67.5% (295/437), and the expression was different in different types of RCCs. Mechanistically, rt-circ-HS promoted renal carcinoma cell proliferation, migration and invasiveness by functioning as a competitive endogenous inhibitor of miR-539, which we found to be a potent post-transcriptional suppressor of HIF1α, thus promoting expression of HIF1α.
CONCLUSION
The novel rt-circ-HS is highly expressed in different types of RCCs and acts as a competitive endogenous inhibitor of miR-539 to promote expression of its parental gene HIF1α and thus the proliferation, migration and invasion of renal cancer cells.
Humans
;
Carcinoma, Renal Cell/pathology*
;
Cell Proliferation
;
Hypoxia
;
Kidney Neoplasms
;
MicroRNAs/genetics*
;
Neoplasm Invasiveness/genetics*
;
RNA, Circular/metabolism*
;
RNA, Small Interfering
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
4.The effect of HOXC10 gene on biological behaviors of glioma cells and mechanism in tumor microenvironment.
Wen Yi JIANG ; Qing Yang LEI ; Sha Sha LIU ; Li YANG ; Bo YANG ; Yi ZHANG
Chinese Journal of Oncology 2022;44(3):228-237
Objective: To study the effects of Homeobox C10 (HOXC10) on biological characteristics such as migration, invasion and proliferation of glioma cancer cells and to explore the role of HOXC10 gene in glioma microenvironment. Methods: The expression level of HOXC10 in high grade glioma (glioblastoma) and low grade glioma and its effect on patient survival were analyzed by using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Hoxc10-siRNA-1, HOXC10-siRNA-2 and siRNA negative control (NC) were transfected into U251 cells according to the operation instructions of HOXC10-siRNA transfection. 100 ng/ mL recombinant protein chemokine ligand 2 (reCCL2) was added into the transfection group, and was labeled as HOXC10-siRNA-1+ reCCL2 and HOXC10-siRNA-2+ reCCL2 groups. The expressions of HOXC10 mRNA and target protein in each group was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot. The proliferation ability of cells in each group was detected by cell counting kit 8 (CCK8) method. The migration ability of cells was detected by Transwell assay and Nick assay, and cell apoptosis was detected by flow cytometry. The expression of chemokines in each group was detected by multiple factors. Co-incubation assays were performed to determine the role of HOXC10 and chemokine ligand 2 (CCL2) in recruiting and polarizing tumor-associated macrophages (M2-type macrophages). Results: The median expression level of HOXC10 in high grade gliomas was 8.51, higher than 1.00 in low grade gliomas (P<0.001) in TCGA database. The median expression level of HOXC10 in high grade gliomas was 0.83, higher than 0.00 in low grade gliomas (P=0.002) in CGGA database. The 5-year survival rate of patients with high HOXC10 expression in TCGA database was 28.2%, lower than 78.7% of those with low HOXC10 expression (P<0.001), and the 5-year survival rate of patients with high HOXC10 expression in CGGA database was 20.3%, lower than 58.0% of those with low HOXC10 expression (P<0.001). The numbers of cell migration in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (45±3) and (69±4) respectively, lower than (159±3) in NC group (P<0.05). The cell mobility of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group at 48 hours were (15±2)% and (28±4)% respectively, lower than (80±5)% of NC group (P<0.05). The expressions of vimentin in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (141 740.00±34 024.56) and (94 655.00±5 687.97), N-cadherin were (76 810.00±14.14) and (94 254.00±701.45), β-catenin were (75 786.50±789.84) and (107 296.50±9 614.53), lower than (233 768.50±34 114.37), (237 154.50±24 715.50) and (192 449.50±24 178.10) of NC group (P<0.05). The A value of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.44±0.05) and (0.32±0.02) at 96 hours, lower than 0.92±0.12 of NC group (P<0.05). The apoptosis rates of HOXC10-siRNA-1 group and HOXC10 siRNA-2 group were (10.23±1.24)% and (13.81±2.16)%, higher than (4.60±0.07)% of NC group (P<0.05). The expression levels of CCL2 in U251 cells in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (271.63±44.27) and (371.66±50.21), lower than (933.93±29.84) in NC group (P<0.05). The expression levels of CCL5 (234.81±5.95 and 232.62±5.72), CXCL10 (544.13±48.14 and 500.87±15.65) and CXCL11 (215.75±15.30 and 176.18±16.49) in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were higher than those in NC group (9.98±0.71, 470.54±18.84 and 13.55±0.73, respectively, P<0.05). The recruited numbers of CD14(+) THP1 in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (159.33±1.15) and (170.67±1.15), respectively, lower than (360.00±7.81) in NC group (P<0.05), while addition of reCCL2 promoted the recruitment of CD14(+) THP1 cells (287.00±3.61 and 280.67±2.31 in HOXC10-siRNA-1+ reCCL2 group and HOXC10-siRNA-2+ reCCL2 group, respectively, P<0.05). The expressions level of M2-type macrophage-related gene TGF-β in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.30±0.02) and (0.28±0.02), respectively, lower than (1.06±0.10) in NC group (P<0.05). The expressions level of M1-related gene NOS2 in HOXC10-siRNA-1 and HOXC10-siRNA-2 were (11 413.95±1 911.85) and (5 894.00±945.21), respectively, higher than (13.39±4.32) in NC group (P<0.05). Conclusions: The expression of HOXC10 in glioma is high and positively correlated with the poor prognosis of glioma patients. Knockdown of HOXC10 can inhibit the proliferation, migration and metastasis of human glioma U251 cells. HOXC10 may play an immunosuppressive role in glioma microenvironment by promoting the expression of CCL2 and recruiting and polarizing tumor-associated macrophages (M2 macrophages).
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Genes, Homeobox
;
Glioma/pathology*
;
Homeodomain Proteins/metabolism*
;
Humans
;
Neoplasm Invasiveness/genetics*
;
Tumor Microenvironment
5.CircPCSK5 is highly expressed in gastric cancer and promotes cancer cell proliferation, invasion and epithelial-mesenchymal transition.
Xue Liang ZUO ; Juan CAI ; Zhi Qiang CHEN ; Yan Na LI ; Dou Feng ZHANG
Journal of Southern Medical University 2022;42(10):1440-1451
OBJECTIVE:
To investigate the expression of circPCSK5 in gastric cancer (GC) and its role in regulation of the proliferation, invasion and epithelial-mesenchymal transition (EMT) of GC cells.
METHODS:
High-throughput sequencing was performed in 3 pairs of GC and adjacent gastric mucosa tissues to obtain the differential expression profile of circRNA. The expression of circPCSK5 was detected in 62 patients undergoing radical surgery for GC using RT-qPCR, and the correlation between circPCSK5 expression level and clinicopathological data of the patients was analyzed. The overall survival and disease-free survival of the patients were assessed with Kaplan-Meier survival analysis, and the independent risk factors affecting the patients' prognosis were analyzed using Cox proportional hazards regression model. The stability and subcellular localization of circPCSK5 were assessed using RNase R and actinomycin D assays, fluorescence in situ hybridization and nucleocytoplasmic separation assay. CCK-8 assay, EdU assay and Transwell assay were employed to examine the changes in proliferation, migration and invasion of GC cells with circPCSK5 knockdown or overexpression; Western blotting and RT-qPCR assays were used to detect the expression levels of EMT markers in the transfected cells.
RESULTS:
The expression of circPCSK5 was significantly upregulated in GC tissues and cells (P < 0.001, P < 0.01). The expression level of circPCSK5 was positively correlated with tumor size, vascular invasion, lymph node metastasis and AJCC stage of GC (P < 0.05). The overall survival and disease-free survival were significantly lower in GC patients with high circPCSK5 expression than in those with low circPCSK5 expression (P < 0.001). High circPCSK5 expression was an independent risk factor for a poor prognosis of GC patients (P < 0.05). Knockdown of circPCSK5 significantly inhibited the proliferation, migration and invasion of HGC27 cells (P < 0.01), increased the expressions of E-cadherin, and decreased the expression of N-cadherin and vimentin (P < 0.01). CircPCSK5 overexpression promoted the proliferation, migration and invasion of MKN45 cells (P < 0.01), reduced E-cadherin expression and increased N-cadherin and vimentin expressions (P < 0.01).
CONCLUSION
CircPCSK5 is highly expressed in GC and promotes the proliferation, invasion and EMT of GC cells, suggesting its potential as a prognostic biomarker and therapeutic target for GC.
Humans
;
Epithelial-Mesenchymal Transition/genetics*
;
Stomach Neoplasms/pathology*
;
Vimentin/metabolism*
;
Neoplasm Invasiveness/genetics*
;
In Situ Hybridization, Fluorescence
;
Cell Movement/genetics*
;
Gene Expression Regulation, Neoplastic
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Cadherins/metabolism*
6.Expression of miR-4324 and its targeted gene Talin2 in breast cancer.
Peng GAO ; Hai Tao ZHU ; Wen Hao PEI ; Pei Hai XU ; Yong Xing DING
Journal of Southern Medical University 2022;42(10):1517-1525
OBJECTIVE:
To investigate the regulatory effect of miR-4324 on ankyrin 2(Talin2) expression and biological behaviors of breast cancer cells and the clinical implications of changes in miR-4324 and Talin2 expressions in breast cancer.
METHODS:
In breast cancer and adjacent tissues, the expressions of Talin2 and miR-4324 were examined with immunohistochemistry and qRT-PCR, respectively and the association of Talin2 expression levels with the prognosis and clinicopathological features of breast cancer patients was analyzed.The human breast cancer cell line SKBR-3 was transfected with miR-4324 mimic, miR-4324 inhibitor, si-Talin2, or both miR-4324 inhibitor and si-Talin2, and the changes in biological behaviors of the cells were examined; the cellular expression of Talin2at the mRNA and protein levels were detected with qRT-PCR and Western blotting.Dual luciferase reporter gene assay was used to verify the targeting relationship between miR-4324 and Talin2.The effect of miR-4324-mediated regulation of Talin2 on SKBR-3 cell migration was assessed using Transwell assays.
RESULTS:
Talin2 expression was significantly higher in breast cancer tissues than in the adjacent tissues, and its expression level was correlated with lymph node metastasis and high HER-2 expression in breast cancer (P < 0.05) but not with the patient's age, clinical stage, histological grade or expressions of estrogen and progesterone receptors (P >0.05).The expression of miR-4324 was significantly reduced in breast cancer tissues as compared with the adjacent tissues (P < 0.01).In SKBR-3 cells, transfection with miR-4324 mimics significantly inhibited proliferation, migration and invasion (P < 0.05) and promoted apoptosis (P < 0.01) of the cells.Dual luciferase reporter gene assay confirmed that cotransfection with miR-4324 mimics significantly reduced luciferase activity of Talin2-3'-UTR WT reporter plasmid (P < 0.05).Transfection of the cells with miR-4324 mimics significantly reduced mRNA and protein expressions of Talin2(P < 0.05).Transwell migration assay showed that the migration ability of SKBR-3 cells was significantly enhanced after transfection with miR-4324 inhibitor (P < 0.01), lowered after transfection with si-Talin2(P < 0.01), and maintained at the intermediate level after co-transfection with miR-4324 inhibitor+si-Talin2 group (P < 0.05).
CONCLUSIONS
High expression of Talin2 is associated with lymph node metastasis and HER-2 overexpression in breast cancer patients.Down-regulation of miR-4324 inhibits the proliferation, invasion and migration and induces apoptosis of breast cancer cells, and the inhibitory effect of miR-4324 knockdown on breast cancer cell migration is mediated probably by targeted inhibition of Talin2 expression.
Female
;
Humans
;
Breast Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Luciferases/genetics*
;
Lymphatic Metastasis
;
MicroRNAs/metabolism*
;
Neoplasm Invasiveness/genetics*
;
RNA, Messenger
7.Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner.
Weiwei JIANG ; Fangfang CAI ; Huangru XU ; Yanyan LU ; Jia CHEN ; Jia LIU ; Nini CAO ; Xiangyu ZHANG ; Xiao CHEN ; Qilai HUANG ; Hongqin ZHUANG ; Zi-Chun HUA
Protein & Cell 2020;11(11):825-845
This study was designed to evaluate ERK5 expression in lung cancer and malignant melanoma progression and to ascertain the involvement of ERK5 signaling in lung cancer and melanoma. We show that ERK5 expression is abundant in human lung cancer samples, and elevated ERK5 expression in lung cancer was linked to the acquisition of increased metastatic and invasive potential. Importantly, we observed a significant correlation between ERK5 activity and FAK expression and its phosphorylation at the Ser
A549 Cells
;
Animals
;
Cell Movement
;
Epithelial-Mesenchymal Transition/genetics*
;
Focal Adhesion Kinase 1/metabolism*
;
Humans
;
Lung Neoplasms/pathology*
;
MAP Kinase Signaling System
;
Mice
;
Mitogen-Activated Protein Kinase 7/metabolism*
;
Neoplasm Invasiveness
;
Neoplasm Metastasis
;
Neoplasm Proteins/metabolism*
8.Mechanism of β-carboline alkaloids inhibiting migration and invasion of SGC-7901 cells.
Tao XI ; Huan XIA ; Yu-Xiang FAN ; Yong-Cheng CAO ; Hong-Liang ZHANG
China Journal of Chinese Materia Medica 2019;44(1):119-124
To explore the mechanism of β-carboline alkaloids inhibiting the migration and invasion of SGC-7901 cells and its correlation with FAK gene expression,CCK-8 method was used to determine the inhibitory rate of β-carboline alkaloids on the proliferation of gastric cancer SGC-7901 cells under different concentrations.The effect of β-carboline alkaloids on the migration and invasion of SGC-7901 cells was used by Transwell compartment.Detection of mRNA and protein expression of FAK genes were used by qRT-PCR and Western blot.Then si-FAK-1051 recombinant plasmid was transfected into SGC-7901 cells.FAK gene silencing effect was identified by qRT-PCR and Western blot technique again.Finally,the effects of FAK gene silencing on proliferation and migration of gastric cancer SGC-7901 cells were detected by CCK-8 kit and Transwell chamber assay respectively.With the increase of the concentration ofβ-carboline alkaloids,the inhibitory rate of SGC-7901 cells in human gastric cancer cells increased gradually,with IC5013.364 mg·L-1.The number of SGC-7901 cells of Transwell compartment in the positive experimental group(5-FU,5 mg·L-1) and the β-carboline alkaloids group decreased significantly(P<0.01) and the number of SGC-7901 cells in the β-carboline alkaloids group was significantly lower than that in the positive experimental group(P<0.01).Compared with the blank control group,the mRNA and protein expression level of FAK genes in the positive experimental group was significantly lower than that in the experimental group of β-carboline alkaloids(P<0.05).After transfection of si-FAK-1051 into gastric cancer SGC-7901 cells,the expression of mRNA and protein of FAK gene was significantly down regulated(P<0.05).SGC-7901 cell proliferation and cell migration ability also decreased significantly(P<0.05).β-carboline alkaloids are more effective than 5-FU in inhibiting migration and invasion of gastric cancer SGC-7901 cells,and the mechanism may be related to the inhibition of mRNA and protein expression of FAK gene by β-carboline alkaloids.
Alkaloids
;
pharmacology
;
Carbolines
;
pharmacology
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
Focal Adhesion Kinase 1
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Gene Silencing
;
Humans
;
Neoplasm Invasiveness
;
Stomach Neoplasms
;
drug therapy
;
pathology
9.Role of cytokine signal suppressor 3 in the regulatory mechanism of colon cancer invasion and proliferation.
Journal of Southern Medical University 2019;39(1):43-48
OBJECTIVE:
To investigate the expression of cytokine signal suppressor 3 (SOCS3) in colon cancer tissue and the mechanism by which SOCS3 regulates the proliferation and invasion of colon cancer.
METHODS:
We collected the specimens of tumor tissues and paired adjacent tissues from 80 patients with colon cancer undergoing radical resection in our hospital between July, 2014 and May, 2017, and the expression of SOCS3 in the tissue samples was analyzed using Western blotting. We also transfected colon cancer cell line SW480 with a SOCS3-overexpressing plasmid or a small interference RNA (siRNA) for SOCS3 knockdown, and the changes in the cell proliferation and invasion capacity were evaluated using CCK-8 assay and Transwell assay, respectively. The effect of demethylation and IL-6 treatment on SOCS3 expression and the proliferation and invasion of SW480 cells were observed.
RESULTS:
Colon cancer tissues showed a lowered expression of SOCS3 compared with the adjacent tissues. Over-expression of SOCS3 significantly inhibited while SOCS3 knockdown obviously promoted the proliferation and invasion of SW480 cells . Demethylation treatment up-regulated SOCS3 expression and inhibited the proliferation and invasion capacity of SW480 cells; IL-6 treatment of the cells caused the reverse changes.
CONCLUSIONS
SOCS3 participates in the development and progression of colon cancer and serves as a potential target for colon cancer treatment. In patients with colon cancer, the low expression of SOCS3 possibly as a result of methylation may promote the proliferation and invasion of the cancer cells.
Cell Line, Tumor
;
Cell Proliferation
;
Colonic Neoplasms
;
etiology
;
pathology
;
Cytokines
;
Demethylation
;
Disease Progression
;
Humans
;
Interleukin-6
;
pharmacology
;
Neoplasm Invasiveness
;
Neoplasm Proteins
;
metabolism
;
RNA, Small Interfering
;
Signal Transduction
;
Suppressor of Cytokine Signaling 3 Protein
;
genetics
;
metabolism
;
Transfection
10.MTBP regulates migration and invasion of prostate cancer cells .
Zhuoyu XIAO ; Mingkun CHEN ; Jiankun YANG ; Cheng YANG ; Xianyuan LÜ ; Hu TIAN ; Cundong LIU
Journal of Southern Medical University 2019;39(1):6-12
OBJECTIVE:
To investigate the role of MTBP in regulating the migration and invasion of human prostate cancer cells.
METHODS:
The baseline expressions of MTBP in 3 different human prostate cancer cells lines (22RV1, DU145 and Lncap) were detected using Western blotting. The cells were transfected with a small interfering RNA (siRNA) for MTBP knockdown or MTBP plasmid for MTBP overexpression, and 48 h later, the cells were examined for MTBP expression with Western blotting; the changes in the migration abilities of the cells were evaluated using wound healing assay and Transwell assay, and the cell invasiveness was assessed using Matrigel Transwell assay. The expression of E-cadherin protein, a marker of epithelial mesenchymal transition (EMT), was detected using Western blotting.
RESULTS:
MTBP expression was the highest in DU145 cells followed by Lncap cells, and was the lowest in 22RV1 cells, indicating a positive correlation of MTBP expression with the level of malignancy of human prostate cancer cells. Transfection of the cells with siRNA or MTBP plasmids efficiently lowered or enhanced the expressions of MTBP in human prostate cancer cells. Wound healing assay showed that inhibition of MTBP expression decreased the migration ability of the prostate cancer cells, and MTBP overexpression significantly promoted the migration of the cells ( < 0.01). Transwell assay showed that MTBP knockdown significantly lowered the migration and invasion ability of the cells, while MTBP overexpression markedly increased the number of migrating and invading cells ( < 0.01); Western blotting results showed that MTBP knockdown increased the expression of E-cadherin protein, and MTBP overexpression decreased E-cadherin expression in the prostate cancer cells.
CONCLUSIONS
MTBP overexpression promotes the migration and invasion of human prostate cancer cells possibly relation to the induction of EMT.
Antigens, CD
;
metabolism
;
Cadherins
;
metabolism
;
Carrier Proteins
;
genetics
;
metabolism
;
Cell Line, Tumor
;
Cell Movement
;
Epithelial-Mesenchymal Transition
;
Gene Expression Regulation, Neoplastic
;
Gene Knockdown Techniques
;
Humans
;
Male
;
Neoplasm Invasiveness
;
Prostatic Neoplasms
;
metabolism
;
pathology
;
RNA, Small Interfering
;
Transfection

Result Analysis
Print
Save
E-mail