1.Clinical Characteristics and Influencing Factors of Rheumatoid Arthritis in Patients with Cold Dampness Obstruction Syndrome
Yanyu CHEN ; Yanqi LI ; Longxiao LIU ; Liubo ZHANG ; Tianyi LAN ; Nan ZHANG ; Cheng XIAO ; Yuan XU ; Qingwen TAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):140-146
ObjectiveTo study the clinical characteristics and influencing factors of rheumatoid arthritis (RA) in the patients with cold dampness obstruction syndrome. MethodsThe RA patients treated in the Department of Traditional Chinese Medicine and Rheumatology of the China-Japan Friendship Hospital from August 2022 to June 2024 were selected. The demographic information, clinical data, laboratory test results, and traditional Chinese medicine (TCM) symptom information were collected for syndrome differentiation, on the basis of which the characteristics and influencing factors of cold dampness obstruction syndrome were analyzed. ResultsA total of 258 RA patients were selected in this study, including 88 (34.1%) patients with cold dampness obstruction syndrome, 53 (20.5%) patients with dampness and heat obstruction syndrome, 31 (12.0%) patients with wind dampness obstruction syndrome, 29 (11.2%) patients with liver-kidney deficiency syndrome, 19 (7.4%) patients with Qi-blood deficiency syndrome, 14 (5.4%) patients with phlegm-stasis obstruction syndrome, 15 (5.8%) patients with stasis obstructing collateral syndrome and 9 (3.5%) patients with Qi-Yin deficiency syndrome. The patients were assigned into two groups of cold dampness obstruction syndrome and other syndromes. The group of cold dampness obstruction syndrome had lower joint fever, 28-tender joint count (TJC28), and 28-joint disease activity score (DAS28)-C-reactive protein (CRP) and higher central sensitization, cold feeling of joints, fear of wind and cold, cold limbs, and abdominal distention than the group of other syndromes (P<0.05). The binary logistic regression analysis showed that central sensitization (OR 5.749, 95%CI 2.116-15.616, P<0.001) and DAS28-CRP (OR 0.600, 95% CI 0.418-0.862, P=0.006) were the independent factors influencing cold dampness obstruction syndrome in RA. ConclusionCold dampness obstruction syndrome is a common syndrome in RA patients. It is associated with central sensitization, cold feeling of joints, abdominal distension and may be a clinical syndrome associated with central sensitization.
2.Programmed Cell Death in Endometriosis and Traditional Chinese Medicine Intervention: A Review
Zuoliang ZHANG ; Wanrun WANG ; Wen LI ; Xue HAN ; Xiaohong CHEN ; Nan SU ; Huiling LIU ; Quansheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):48-57
Endometriosis (EMT) is a common disease with frequent occurrence and difficult to be cured in modern clinical practice of obstetrics and gynaecology. It is characterized by progressively worsening dysmenorrhoea, pelvic mass, and infertility. The incidence of EMT is growing and increasingly younger patients are diagnosed with this disease, which poses a serious threat to the reproductive and psychological health of women of childbearing age and adolescent females. However, the pathogenesis of EMT is still not completely clear, and the disease has a long course. Therefore, developing new therapies is an urgent clinical problem to be solved. Great progress has been achieved in the treatment of EMT with traditional Chinese medicine (TCM), while the underlying mechanism remains in exploration. Programmed cell death (PCD) is a cell death mode mediated by a variety of bio-molecules with specific signaling cascades. The known PCD processes include apoptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis, which all play a pivotal role in the development of EMT. Researchers have made achievements in the treatment of EMT with TCM, which regulates PCD via multiple pathways, routes, targets, and mechanisms. However, the progress in the regulation of PCD in the treatment of EMT with TCM remains to be reviewed. This paper reviews the research progress in the treatment of EMT with TCM from five PCD processes (apoptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis), with the aim of providing a theoretical basis for the clinical prevention and treatment of EMT.
3.Treatment of Parkinson's Disease with Traditional Chinese Medicine by Regulating BDNF/TrkB Signaling Pathway: A Review
Lulu JIA ; Ying LI ; Jiale YIN ; Nan JIA ; Xiaoxi LIU ; Li LING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):315-322
Parkinson's disease(PD) is the second most common neurodegenerative disease in the world, which seriously affects the lives of patients. With the acceleration of aging process, the number of patients continues to rise. Its main pathological features are aggregation of α-synuclein and degenerative death of dopaminergic neurons in the substantia nigra. However, the pathogenesis of PD is still unclear. According to reports, the brain-derived neurotrophic factor(BDNF)/tyrosine kinase receptor B(TrkB) signaling pathway is highly expressed and activated in dopaminergic neurons in the substantia nigra, which is closely related to neurophysiological processes such as neurogenesis, synaptic plasticity, neuroinflammation, and oxidative stress. It plays an important role in the occurrence and development of PD. At present, the treatment methods of Western medicine for PD are mainly based on drugs such as levodopa and dopamine agonists to alleviate motor symptoms, but with the increase of dose, the adverse reactions are significantly enhanced. Traditional Chinese medicine(TCM) has attracted people to explore its therapeutic effects on PD due to its characteristics of homology of medicine and food, economy, minor adverse reactions and multi-target action. Therefore, this paper systematically reviews the role of BNDF/TrkB pathway in the pathogenesis of PD and the mechanism of TCM formulas, extracts and monomers in the treatment of PD by regulating the BNDF/TrkB pathway according to retrieving the latest research reports at home and abroad, so as to provide a reference for the clinical application of related TCM and the development of new drugs for PD.
4.Comprehensive evaluation of benign and malignant pulmonary nodules using combined biological testing and imaging assessment in 1 017 patients: A retrospective cohort study
Lei ZHANG ; Zihao LI ; Nan LI ; Jun CHENG ; Feng ZHANG ; Pinghui XIA ; Wang LÜ ; ; Jian HU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):60-66
Objective By combining biological detection and imaging evaluation, a clinical prediction model is constructed based on a large cohort to improve the accuracy of distinguishing between benign and malignant pulmonary nodules. Methods A retrospective analysis was conducted on the clinical data of the 32 627 patients with pulmonary nodules who underwent chest CT and testing for 7 types of lung cancer-related serum autoantibodies (7-AABs) at our hospital from January 2020 to April 2024. The univariate and multivariate logistic regression models were performed to screen independent risk factors for benign and malignant pulmonary nodules, based on which a nomogram model was established. The performance of the model was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Results A total of 1 017 patients with pulmonary nodules were included in the study. The training set consisted of 712 patients, including 291 males and 421 females, with a mean age of (58±12) years. The validation set included 305 patients, comprising 129 males and 176 females, with a mean age of (58±13) years. Univariate ROC curve analysis indicated that the combination of CT and 7-AABs testing achieved the highest area under the curve (AUC) value (0.794), surpassing the diagnostic efficacy of CT alone (AUC=0.667) or 7-AABs alone (AUC=0.514). Multivariate logistic regression analysis showed that radiological nodule diameter, nodule nature, and CT combined with 7-AABs detection were independent predictors, which were used to construct a nomogram prediction model. The AUC values for this model were 0.826 and 0.862 in the training and validation sets, respectively, demonstrating excellent performance in DCA. Conclusion The combination of 7-AABs with CT significantly enhances the accuracy of distinguishing between benign and malignant pulmonary nodules. The developed predictive model provides strong support for clinical decision-making and contributes to achieving precise diagnosis and treatment of pulmonary nodules.
5.Mechanisms of reproductive toxicity and ferroptosis induced by polystyrene microplastics in male mice
Jiabo WANG ; Rong LI ; Setiniaz NAZIRA ; Chengqing LIU ; Nan YANG ; Qi YAN
Journal of Environmental and Occupational Medicine 2025;42(2):224-231
Background Polystyrene microplastics (PS-MPs) attract widespread public attention due to their adverse effects on mammalian reproductive systems. However, it is currently unclear whether ferroptosis is related to testicular damage and decreased sperm quality in mice exposed to PS-MPs. Objective To clarify the reproductive damage in male mice exposed to PS-MPs and investigate the mechanism of ferroptotic effects. Methods Five-week-old male BALB/c mice were randomly divided into four experimental groups, including one control group and three PS-MPs groups at low dose (0.5 mg·kg−1), medium dose (5 mg·kg−1), and high dose (50 mg·kg−1), respectively, with 6 mice in each group. The treatment was delivered by gavage for 35 consecutive days (one time per day). After the mice were neutralized, the wet weights of testis and epididymis were measured, and organ coefficients were then calculated. Sperm was counted by hematimetry, and sperm motility and adenosine triphosphate (ATP) level were evaluated using CCK-8 and CellTiter Glo ® Kit 2.0 Assay respectively. In addition, serum testosterone, follicle-stimulating hormone, and luteinizing hormone were determined using ELISA kit, total testicular iron content was measured using tissue iron kit, and pathological changes in testicular tissue were observed after hematoxylin-eosin (HE) staining. We also used glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) assays to examine their changes to better understand the physiological status of testicular tissue. Finally, the expression levels of ferroptosis-associated proteins glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) were detected by Western blotting. Results Compared with the control group, the testicular index in the high dose group decreased, and the epididymal index decreased in all dose groups (P<0.05). The results of sperm quality analysis showed that the sperm count in each dose group was lower than that of the control group; the sperm motility decreased, sperm malformation rate increased, and ATP level in sperm decreased in the medium and high dose groups. The results of HE staining showed that the spermatogenic epithelium was disordered and the arrangement of spermatogenic cells were loose in the low dose group, the spermatogenic gap was enlarged in the middle dose group, and the cells in the high dose group were vacuolated and even azoospermic. The results of serum sex hormone levels showed that the serum testosterone levels decreased in each dose group, the serum follicle-stimulating hormone levels decreased in the medium and high dose groups, and the serum luteinizing hormone levels decreased in the high dose group (P<0.05). The iron content in the testicular tissue homogenate of the high dose group increased (P<0.05). The levels of GSH and SOD in the homogenate of testicular tissue decreased in the medium and high dose groups, while the levels of MDA increased (P<0.05). The results of Western blotting showed that the protein expression level of GPX4 in the testis in the high dose group was lower than that in the control group. The protein expression levels of SLC7A11 in the medium and high dose groups were lower than that in the control group. The results of correlation analysis showed that the expression level of GPX4 was positively correlated with sperm count, and negatively correlated with MDA level (P<0.05). SLC7A11 expression level was positively correlated with sperm count, and negatively correlated with sperm malformation rate and MDA level (P<0.05). Conclusion PS-MPs exposure leads to decreased sperm quality, testicular damage, and decreased serum sex hormone levels in male mice, and its mechanism of action may involve ferroptosis.
6.UPLC-Q-TOF-MS Reveals Mechanisms of Modified Qing'e Formula in Delaying Skin Photoaging and Regulating Circadian Rhythm
Wanyu YANG ; Xiujun ZHANG ; Yan WANG ; Chunjing SONG ; Haoming MA ; Lifeng WANG ; Nan LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):88-97
ObjectiveTo reveal the active substances and mechanisms of modified Qing'e formula (MQEF) in delaying skin photoaging by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS),network pharmacology, and cell experiments. MethodsUPLC-Q-TOF-MS and a literature review were employed to analyze the transdermally absorbed components in mice after the topical application of MQEF. The potential targets of MQEF in treating skin photoaging were retrieved from databases.The compound-potential target network and protein-protein interaction network were constructed to screen the key components and core targets. A photoaging cell model was established by irradiating HaCaT cells with medium-wave ultraviolet B (UVB). The safe doses of bakuchiol (BAK) and salvianolic acid B (SAB) for treating HaCaT cells and the effects of BAK and SAB on the viability of cells exposed to UVB irradiation were determined by the cell counting kit-8 (CCK-8) method.The reactive oxygen species (ROS) fluorescent probe was used to measure the ROS production in the cells treated with BAK and SAB.The expression levels of genes related to oxidative stress,inflammation,collagen metabolism,and circadian rhythm clock were measured by Real-time PCR. ResultsA total of 24 transdermally absorbed components of MQEF were identified,which acted on 367 potential targets,and 417 targets related to skin photoaging were screened out,among which 47 common targets were predicted as the targets of MQEF in treating skin photoaging. MQEF exerted the anti-photoaging effect via key components such as BAK and SAB,which acted on core proteins such as serine/threonine kinase 1 (Akt1) and mitogen-activated protein kinase 3 (MAPK3) and intervened in core pathways such as the tumor necrosis factor (TNF) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways.Compared with the model group,the administration of BAK and SAB increased the survival rate of HaCaT cells (P<0.01),down-regulated the mRNA levels of cyclooxygenase-2 (COX-2),interleukin-6 (IL-6),tumor necrosis factor-α (TNF-α),matrix metalloproteinase-1 (MMP-1),and matrix metalloproteinase-9 (MMP-9) (P<0.01),and up-regulated the mRNA levels of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO-1) (P<0.05,P<0.01) in photoaged HaCaT cells.In addition,it eliminated excess ROS production induced by UVB and up-regulated the mRNA levels of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) associated with circadian clock (P<0.05,P<0.01). ConclusionMQEF delays skin photoaging through the coordinated effects of various components,multiple targets,and diverse pathways.The key components BAK and SAB in MQEF exhibit anti-photoaging properties,which involve inhibiting oxidative stress,preventing collagen degradation,mitigating inflammation,and maintaining normal skin circadian rhythms by regulating clock gene expression.
7.Effects of Different Durations of Light Exposure on Body Weight and Learning and Memory Abilities of NIH Mice
Nan ZHANG ; Huaiyin LI ; Xiaodi LIAN ; Juanpeng WEI ; Ming GAO
Laboratory Animal and Comparative Medicine 2025;45(1):73-78
Objective This study aims to investigate the effects of varying durations of light exposure on body weight and learning and memory abilities of pubertal NIH mice. Methods Forty pubertal NIH mice, evenly split by gender and with similar initial weights, were subjected to a 12 h light-dark cycle for one week. They were then randomly assigned to groups with daily light exposure durations of 0, 6, 12, 18, and 24 hours, with 8 mice in each group. The experimental period lasted for 7 weeks, with the first 5 weeks as the feeding phase under different light exposure conditions, and the last 2 weeks as the behavioral testing phase. Their body weight was monitored, and learning and memory abilities were assessed using the T-maze, object location test, and eight-arm maze tests. Results During the light exposure period, there were no significant differences in body weight among groups (P>0.05). However, the weight gain of mice in the 24 h group was significantly higher than that of the 0 h group and the 6 h group during the second and third weeks of light exposure (P<0.05). After five weeks of light exposure, in the T-maze test, the latency time of the 0 h light exposure group was significantly longer than that of the 12 h group (P<0.01), and the latency time of the 24 h light exposure group was significantly longer than that of the 12 h group (P<0.05). In the object location test, the mice in 12 h group exhibited a higher discrimination index and spent more time observing the new location compared to the other groups, with significant differences in comparison to the 18 h group (P<0.01) and the 24 h group (P<0.05). In the eight-arm maze test, the time to find food, the reference memory error rate, and the working memory error rate in the 12 h group were all lower than those in the 0 h group, with significant differences (P<0.05). Moreover, the working memory error rate in the 24 h group was higher than that in the 12 h group, with significant differences (P<0.05). Conclusion Continuous 24 h light exposure affects body weight gain, while light exposure durations exceeding 18 h or below 6 h per day weaken the learning and memory abilities of NIH mice.
8.Impact of Maxing Kugan Decoction on Inflammatory Response and Apoptosis in Oleic Acid-induced Acute Lung Injury in Rats via p38 MAPK/NF-κB Signaling Pathway
Taiqiang JIAO ; Yi NAN ; Ling YUAN ; Jiaqing LI ; Yang NIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):108-116
ObjectiveTo investigate the effects of Maxing Kugan decoction (MKD) on inflammatory response and apoptosis in rats with oleic acid (OA)-induced acute lung injury (ALI) and explore its mechanism of action. MethodsSixty Sprague-Dawley (SD) rats were randomly assigned into six groups: a control group, a model group, a dexamethasone-treated group (2 mg·kg-1), and three MKD-treated groups at low, medium, and high doses (3.1, 6.2,12.4 g·kg-1). Each group was administered either an equivalent volume of normal saline or the corresponding concentration of MKD by gavage for seven consecutive days. The model group and each administration group were used to establish the ALI model by tail vein injection of OA (0.2 mL·kg-1). Twelve hours after modeling, blood gas analyses were conducted, and the wet-to-dry (W/D) weight ratio of lung tissue was measured for each group. Additionally, enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of the rats. Cell damage and apoptosis in lung tissue were examined via hematoxylin-eosin (HE) staining and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assays, and the results were subsequently scored. The expression levels of the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway and apoptosis-related proteins and mRNAs were assessed using Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the control group, the model group exhibited a significant decrease in partial pressure of oxygen (PaO2), blood oxygen saturation (SaO2), and oxygenation index (PaO2/FiO2), along with a marked increase in partial pressure of carbon dioxide (PaCO2) and lung W/D ratio (P<0.01). Additionally, levels of TNF-α, IL-6, and IL-1β in BALF were significantly elevated (P<0.01). Histopathological analysis of lung tissue showed significant inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Pronounced increases were observed in the mRNA expression levels of p38 MAPK, NF-κB p65, inhibitor of NF-κB (IκBα), B-cell lymphoma-2 associated x protein (Bax), and Caspases-3, as well as the protein expression levels of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3, while the mRNA and protein expression of Bcl-2 was downregulated (P<0.01). Compared with the model group, MKD significantly elevated PaO2, SaO2, and PaO2/FiO2 while reducing PaCO2 and W/D ratio in rats (P<0.01). It also greatly reduced TNF-α, IL-6, and IL-1β levels in BALF (P<0.01) and alleviated inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Additionally, it downregulated the mRNA expression of p38 MAPK, NF-κB p65, IκBα, Bax, Caspases-3, as well as protein expression of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3 in lung tissue (P<0.05, P<0.01), while significantly upregulating mRNA and protein expression of Bcl-2 (P<0.01). ConclusionMKD exerts a protective effect on OA-induced ALI rats, potentially through the regulation of the p38 MAPK/NF-κB signaling pathway to inhibit inflammation and apoptosis.
9.Treatment of IgA Nephropathy by Tonifying Kidney and Invigorating Spleen as Well as Detoxifying and Relieving Sore-throat Based on PIgR-CR1-mediated Mucosal-renal Axis
Fan LI ; Hongan WANG ; He NAN ; Mingyu HE ; Chengji CUI ; Yinping WANG ; Yutong LIU ; Shoulin ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):237-244
Immunoglobulin A nephropathy (IgAN) is the primary glomerulonephritis with the highest incidence rate in the world. It is also the main cause of end-stage renal disease (ESRD) in China, which has brought heavy economic burden to the society and patient families. Traditional Chinese medicine (TCM) has certain advantages in treating IgAN. In TCM, IgAN is classified into consumptive disease, hematuria, and edema categories, with the location in the kidney and involving the lung, liver, and spleen. Professor Ren Jixue, a master of TCM, believes that kidney deficiency and spleen deficiency are the root causes of IgAN, and the throat is the source of the disease. He proposed the theory of throat-kidney correlation and used the method of tonifying kidney and invigorating spleen as well as detoxifying and relieving sore-throat to treat IgAN, achieving significant therapeutic effects. Studies have shown that IgAN is closely related to mucosal immune defense. IgAN patients often experience recurrent and gradually worsening symptoms due to mucosal infections, and polymeric Ig receptor (PIgR) is an important component of mucosal defense function. The lack of PIgR leads to the accumulation of IgA molecules in the mucosal lamina propria, and the molecules enter the bloodstream in large quantities and ultimately deposit in the kidneys, causing kidney damage. Complement regulatory protein complement receptor type 1 (CR1) exists on red blood cells and glomeruli and has the function of inhibiting the activation and differentiation of B cells, clearing immune complexes, and inhibiting excessive activation of the complement system. Therefore, regulating the immune defense function through the mucosal-renal axis mediated by PIgR-CR1 will be an important target for preventing and treating IgAN. Based on the theory of throat-kidney correlation, this article explores the effects and molecular mechanisms of tonifying kidney and invigorating spleen as well as detoxifying and relieving sore-throat in preventing and treating IgAN by regulating the mucosal-kidney axis mediated by PIgR-CR1. It provides effective theoretical support and a scientific basis for TCM prevention and treatment of IgAN based on the theory of throat-kidney correlation.
10.Impact of Maxing Kugan Decoction on Inflammatory Response and Apoptosis in Oleic Acid-induced Acute Lung Injury in Rats via p38 MAPK/NF-κB Signaling Pathway
Taiqiang JIAO ; Yi NAN ; Ling YUAN ; Jiaqing LI ; Yang NIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):108-116
ObjectiveTo investigate the effects of Maxing Kugan decoction (MKD) on inflammatory response and apoptosis in rats with oleic acid (OA)-induced acute lung injury (ALI) and explore its mechanism of action. MethodsSixty Sprague-Dawley (SD) rats were randomly assigned into six groups: a control group, a model group, a dexamethasone-treated group (2 mg·kg-1), and three MKD-treated groups at low, medium, and high doses (3.1, 6.2,12.4 g·kg-1). Each group was administered either an equivalent volume of normal saline or the corresponding concentration of MKD by gavage for seven consecutive days. The model group and each administration group were used to establish the ALI model by tail vein injection of OA (0.2 mL·kg-1). Twelve hours after modeling, blood gas analyses were conducted, and the wet-to-dry (W/D) weight ratio of lung tissue was measured for each group. Additionally, enzyme-linked immunosorbent assay (ELISA) was employed to quantify the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of the rats. Cell damage and apoptosis in lung tissue were examined via hematoxylin-eosin (HE) staining and TdT-mediated dUTP-biotin nick end labeling (TUNEL) assays, and the results were subsequently scored. The expression levels of the p38 mitogen-activated protein kinase (p38 MAPK)/nuclear factor kappa-B (NF-κB) signaling pathway and apoptosis-related proteins and mRNAs were assessed using Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the control group, the model group exhibited a significant decrease in partial pressure of oxygen (PaO2), blood oxygen saturation (SaO2), and oxygenation index (PaO2/FiO2), along with a marked increase in partial pressure of carbon dioxide (PaCO2) and lung W/D ratio (P<0.01). Additionally, levels of TNF-α, IL-6, and IL-1β in BALF were significantly elevated (P<0.01). Histopathological analysis of lung tissue showed significant inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Pronounced increases were observed in the mRNA expression levels of p38 MAPK, NF-κB p65, inhibitor of NF-κB (IκBα), B-cell lymphoma-2 associated x protein (Bax), and Caspases-3, as well as the protein expression levels of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3, while the mRNA and protein expression of Bcl-2 was downregulated (P<0.01). Compared with the model group, MKD significantly elevated PaO2, SaO2, and PaO2/FiO2 while reducing PaCO2 and W/D ratio in rats (P<0.01). It also greatly reduced TNF-α, IL-6, and IL-1β levels in BALF (P<0.01) and alleviated inflammatory infiltration, tissue edema, alveolar septal thickening, and apoptosis of lung tissue. Additionally, it downregulated the mRNA expression of p38 MAPK, NF-κB p65, IκBα, Bax, Caspases-3, as well as protein expression of p-p38 MAPK, p-NF-κB p65, p-IκBα, Bax, Caspases-3, and cleaved Caspases-3 in lung tissue (P<0.05, P<0.01), while significantly upregulating mRNA and protein expression of Bcl-2 (P<0.01). ConclusionMKD exerts a protective effect on OA-induced ALI rats, potentially through the regulation of the p38 MAPK/NF-κB signaling pathway to inhibit inflammation and apoptosis.

Result Analysis
Print
Save
E-mail