1.Progress in the application of poloxamer in new preparation technology
Xue QI ; Yi CHENG ; Nan LIU ; Zengming WANG ; Hui ZHANG ; Aiping ZHENG ; Dongzhou KANG
China Pharmacy 2025;36(5):630-635
Poloxamer, as a non-ionic surfactant, exhibits a unique triblock [polyethylene oxide-poly (propylene oxide)-polyethylene oxide] structure, which endows it with broad application potential in various fields, including solid dispersion technology, nanotechnology, gel technology, biologics, gene engineering and 3D printing. As a carrier, it enhances the solubility and bioavailability of poorly soluble drugs. In the field of nanotechnology, it serves as a stabilizer etc., enriching preparation methods. In gel technology, its self-assembly behavior and thermosensitive properties facilitate controlled drug release. In biologics, it improves targeting efficiency and reduces side effects. In gene engineering, it enhances delivery efficiency and expression levels. In 3D printing, it provides novel strategies for precise drug release control and the production of high-quality biological products. As a versatile material, poloxamer holds promising prospects in the pharmaceutical field.
2.Chrysin alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis in rats.
Jin-Feng SHANG ; Jia-Kang JIAO ; Qian-Nan LI ; Ying-Hui LU ; Jing-Yi WANG ; Ming-Xue YAN ; Yin-Lian WEN ; Gui-Jin-Feng HUANG ; Xiao-Lu ZHANG ; Xin LIU
China Journal of Chinese Materia Medica 2023;48(6):1597-1605
The purpose of this study is to investigate whether chrysin reduces cerebral ischemia-reperfusion injury(CIRI) by inhi-biting ferroptosis in rats. Male SD rats were randomly divided into a sham group, a model group, high-, medium-, and low-dose chrysin groups(200, 100, and 50 mg·kg~(-1)), and a positive drug group(Ginaton, 21.6 mg·kg~(-1)). The CIRI model was induced in rats by transient middle cerebral artery occlusion(tMCAO). The indexes were evaluated and the samples were taken 24 h after the operation. The neurological deficit score was used to detect neurological function. The 2,3,5-triphenyl tetrazolium chloride(TTC) staining was used to detect the cerebral infarction area. Hematoxylin-eosin(HE) staining and Nissl staining were used to observe the morphological structure of brain tissues. Prussian blue staining was used to observe the iron accumulation in the brain. Total iron, lipid pero-xide, and malondialdehyde in serum and brain tissues were detected by biochemical reagents. Real-time quantitative polymerase chain reaction(RT-qPCR), immunohistochemistry, and Western blot were used to detect mRNA and protein expression of solute carrier fa-mily 7 member 11(SLC7A11), transferrin receptor 1(TFR1), glutathione peroxidase 4(GPX4), acyl-CoA synthetase long chain family member 4(ACSL4), and prostaglandin-endoperoxide synthase 2(PTGS2) in brain tissues. Compared with the model group, the groups with drug intervention showed restored neurological function, decreased cerebral infarction rate, and alleviated pathological changes. The low-dose chrysin group was selected as the optimal dosing group. Compared with the model group, the chrysin groups showed reduced content of total iron, lipid peroxide, and malondialdehyde in brain tissues and serum, increased mRNA and protein expression levels of SLC7A11 and GPX4, and decreased mRNA and protein expression levels of TFR1, PTGS2, and ACSL4. Chrysin may regulate iron metabolism via regulating the related targets of ferroptosis and inhibit neuronal ferroptosis induced by CIRI.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Ferroptosis
;
Signal Transduction
;
Brain Ischemia/metabolism*
;
Cyclooxygenase 2/metabolism*
;
RNA, Messenger
;
Cerebral Infarction
;
Reperfusion Injury/metabolism*
;
Malondialdehyde
;
Infarction, Middle Cerebral Artery
3.Changes in retinal nerve fiber layer and macular retinal thickness and predictive value of outcome in children with abnormal refractive amblyopia
Chao-Juan JU ; Yin-Cong XU ; Kang-Ning LI ; Xiao-Nan SHI ; Zhao-Hui XIONG
International Eye Science 2023;23(11):1896-1901
AIM: To investigate the changes in retinal nerve fiber layer(RNFL)and macular retinal thickness(MRT)in children with refractive abnormalities and amblyopia, and their predictive value of outcome.METHODS: A total of 168 children with myopic refractive abnormalities and monocular amblyopia admitted to our hospital from January 2020 to October 2022 were selected as the observation group, with 118 cases of mild to moderate amblyopia and 50 cases of severe amblyopia, and 168 children with normal vision were included as the control group in a 1:1 ratio during the same period. The changes of RNFL and MRT in two groups of children were statistically counted, and the correlation between the severity of refractive abnormalities and RNFL and MRT in children with amblyopia was analyzed. Additionally, the observation group was divided into effective subgroup and ineffective subgroup based on the therapeutic effect. The general information, as well as RNFL and MRT of the effective subgroup and the ineffective subgroups before and after treatment were compared. Logistic was used to analyze the factors influencing efficacy, and ROC curves was plotted to analyze the predictive value of RNFL and MRT alone or in combination for efficacy.RESULTS: RNFL and MRT of cases of severe amblyopia were higher than those of the mild to moderate amblyopia and the control groups(all P<0.05); the severity of amblyopia in children with refractive abnormalities is positively correlated with RNFL and MRT(rs=0.745 and0.724, both P<0.001); among patients of mild to moderate and severe, there were statistically significant differences between the effective and ineffective subgroups in terms of initial treatment age, fixation form, treatment compliance, as well as RNFL, MRT, and their differences before and 1mo postoperatively(all P<0.05). Logistic analysis showed that initial treatment age, fixation nature, treatment compliance, RNFL and MRT before and 1mo postoperatively were all factors influencing the therapeutic effect of amblyopia with refractive abnormalities in children(all P<0.05); after 1mo of treatment, the combined prediction of RNFL and MRT was significantly better than that of single prediction in children with mild to severe amblyopia.CONCLUSION:There are differences in RNFL and MRT in children with abnormal refractive amblyopia, and they are closely related to the different degrees and curative effects of children. The combination of RNFL and MRT after 1mo of treatment has certain value in predicting children with different degrees of abnormal refractive amblyopia.
4.Recompensation of complications in patients with hepatitis B virus-related decompensated cirrhosis treated with entecavir antiviral therapy.
Ting ZHANG ; You DENG ; Hai Yan KANG ; Hui Ling XIANG ; Yue Min NAN ; Jin Hua HU ; Qing Hua MENG ; Ji Lian FANG ; Jie XU ; Xiao Ming WANG ; Hong ZHAO ; Calvin Q PAN ; Ji Dong JIA ; Xiao Yuan XU ; Wen XIE
Chinese Journal of Hepatology 2023;31(7):692-697
Objective: To analyze the occurrence of recompensation conditions in patients with chronic hepatitis B virus-related decompensated cirrhosis after entecavir antiviral therapy. Methods: Patients with hepatitis B virus-related decompensated cirrhosis with ascites as the initial manifestation were prospectively enrolled. Patients who received entecavir treatment for 120 weeks and were followed up every 24 weeks (including clinical endpoint events, hematological and imaging indicators, and others) were calculated for recompensation rates according to the Baveno VII criteria. Measurement data were compared using the Student t-test or Mann-Whitney U test between groups. Categorical data were compared by the χ (2) test or Fisher's exact probability method between groups. Results: 283 of the 320 enrolled cases completed the 120-week follow-up, and 92.2% (261/283) achieved a virological response (HBV DNA 20 IU/ml). Child-Pugh and MELD scores were significantly improved after treatment (8.33 ± 1.90 vs. 5.77 ± 1.37, t = 12.70, P < 0.001; 13.37 ± 4.44 vs. 10.45 ± 4.58, t = 5.963, P < 0.001). During the 120-week follow-up period, 14 cases died, two received liver transplants, 19 developed hepatocellular cancer, 11 developed gastroesophageal variceal bleeding, and four developed hepatic encephalopathy. 60.4% (171/283) (no decompensation events occurred for 12 months) and 56.2% (159/283) (no decompensation events occurred for 12 months and improved liver function) of the patients had achieved clinical recompensation within 120 weeks. Patients with baseline MELD scores > 15 after active antiviral therapy achieved higher recompensation than patients with baseline MELD scores ≤15 [50/74 (67.6%) vs. 109/209 (52.2%), χ (2) = 5.275, P = 0.029]. Conclusion: Antiviral therapy can significantly improve the prognosis of patients with hepatitis B virus-related decompensated cirrhosis. The majority of patients (56.2%) had achieved recompensation. Patients with severe disease did not have a lower probability of recompensation at baseline than other patients.
Humans
;
Hepatitis B virus/genetics*
;
Hepatitis B, Chronic/drug therapy*
;
Antiviral Agents/adverse effects*
;
Esophageal and Gastric Varices/complications*
;
Liver Cirrhosis/complications*
;
Treatment Outcome
;
Gastrointestinal Hemorrhage/complications*
;
Hepatitis B/drug therapy*
5.Research Advances on the Role of Bone Marrow Stromal Cell in Acute Lymphoblastic Leukemia --Review.
Jun-Nan KANG ; Ze-Hui CHEN ; Chen TIAN
Journal of Experimental Hematology 2022;30(1):319-322
Acute lymphoblastic leukemia (ALL) is a kind of the most common hematopoietic malignancy, its recurrence and drug resistance are closely related to the bone marrow microenvironment. Bone marrow stromal cell (BMSC) is an important part of the bone marrow microenvironment and their interaction with leukemia cells cannot be ignored. BMSC participates in and regulate signaling pathways related to proliferation or apoptosis of ALL cells by secretes cytokines or extracellular matrix proteins, thus affecting the survival of ALL cells. In this review, the research advance of several signaling pathways of the interaction between BMSC and ALL cells was summarized briefly.
Apoptosis
;
Bone Marrow
;
Bone Marrow Cells
;
Humans
;
Mesenchymal Stem Cells
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
Stromal Cells
;
Tumor Microenvironment
6.Exploration of mechanism of "simultaneous treatment of brain and heart" of Naoxintong Capsules based on Toll-like receptor signaling pathway.
Qian-Nan LI ; Jin-Feng SHANG ; Ting-Yue JIANG ; Lei BI ; Jia-Kang JIAO ; Ying-Hui LU ; Qi SONG ; Shabuer-Jiang LIZHA ; Xin LIU
China Journal of Chinese Materia Medica 2022;47(15):4110-4118
This study aims to explore the mechanism of "simultaneous treatment of the brain and the heart" of Naoxintong Capsules(NXT) under cerebral ischemia based on Toll-like receptor(TLR) signaling pathway.Male SD rats were randomized into sham operation group, model group, NXT group, and positive drug group.Middle cerebral artery occlusion(MCAO) model rats were used in model group, NXT group, and positive drug group, respectively.Neurological function was scored with the Bederson scale, and brain infarct rate was measured by 2,3,5-triphenyltetrazolium chloride(TTC) staining.Brain edema was detected with wet-dry weight method.Hematoxylin-eosin(HE) staining and TdT-mediated dUTP nick-end labeling(TUNEL) staining were used to observe and count apoptotic cardiocytes.In addition, serum myocardial enzymes were measured.The expression of 8 TLR signaling pathway-related proteins interferon-α(IFN-α), interferon regulatory factor-3(IRF3), interferon regulatory factor-7(IRF7), TLR2, TLR4, TLR7, TLR9, and tumor necrosis factor-α(TNF-α) in the cerebral cortex and heart of rats was detected by Western blot. Brain infarct rate, neurological function score, and brain water content in NXT group decreased significantly compared with those in the model group. At the same time, the reduction in apoptosis rate of cardiocytes and the content of serum aspartate aminotransferase(AST), alanine aminotransferase(ALT), creatine kinase(CK), and lactate dehydrogenase(LDH) were decreased in the NXT group.Systems pharmacological results and previous research showed that TLR signaling pathway played an important role in immune inflammatory response.The study of TLR signaling pathway and related proteins is helpful to elucidate the mechanism of "simultaneous treatment of the brain and the heart". Western blot results showed that NXT significantly inhibited the expression of IRF3, IRF7, TLR2, TLR7, and TNF-α in cerebral cortex and heart under cerebral ischemia.Cerebral ischemia influences cardiac functions, and TLR signaling pathway is one of the pathways for "simultaneous treatment of the brain and the heart" of NXT.
Animals
;
Brain/metabolism*
;
Brain Ischemia/metabolism*
;
Capsules
;
Drugs, Chinese Herbal
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Male
;
Myocytes, Cardiac
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 2/metabolism*
;
Toll-Like Receptor 7/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Ligustroflavone ameliorates CCl
Rong KANG ; Wen TIAN ; Wei CAO ; Yang SUN ; Hui-Nan ZHANG ; Ying-Da FENG ; Chen LI ; Ze-Zhi LI ; Xiao-Qiang LI
Chinese Journal of Natural Medicines (English Ed.) 2021;19(3):170-180
Liver fibrosis is a pathological process characterized by excess deposition of extracellular matrix (ECM) that are mainly derived from activated hepatic stellate cells. Previous studies suggested that ligustroflavone (LF) was an ingredient of Ligustrum lucidum Ait. with activities of anti-inflammation and anti-oxidation. In this study, we investigated whether LF had any effect on liver fibrosis. In our study, we established a mouse model of carbon tetrachloride (CCl
8. Antibacterial activity of bacillomycin D-like compounds isolated from Bacillus amyloliquefaciens HAB-2 against Burkholderia pseudomallei
Mamy RAJAOFERA ; Xun KANG ; Xin CHEN ; Chen-Chu LI ; Li YIN ; Lin LIU ; Qing-Hui SUN ; Nan ZHANG ; Chui-Zhe CHEN ; Na HE ; Qian-Feng XIA ; Peng-Fei JIN ; Wei-Guo MIAO
Asian Pacific Journal of Tropical Biomedicine 2020;10(4):183-188
Objective: To investigate the inhibitory effect on Burkholderia pseudomallei (B. pseudomallei) strain HNBP001 of a bacillomycin D-like cyclic lipopeptide compound named bacillomycin DC isolated from Bacillus amyloliquefaciens HAB-2. Methods: The antibacterial effect of bacillomycin DC on B. pseudomallei was determined using the disk diffusion method. The minimum inhibitory concentrations were evaluated by microdilution assay. In addition, transmission electron microscopy was performed and quantitative real-time polymerase chain reaction assay was carried out to determine the expression of MexB, OprD2, and qnrS genes. Results: Bacillomycin DC produced an inhibition zone against B. pseudomallei with minimum inhibitory concentration values of 12.5 μg/mL 24 h after treatment and 50 μg/mL at 48 and 72 h. Transmission electron microscopy showed that bacillomycin DC resulted in roughening cell surface and cell membrane damage. Quantitative real-time polymerase chain reaction analysis showed low expression of MexB, OprD2 and qnrS genes. Conclusions: Bacillomycin DC inhibits the growth of B. pseudomallei and can be a new candidate for antimicrobial agents of B. pseudomallei. Rajaofera Mamy 1 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Kang Xun 2 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Jin Peng-Fei 3 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, Hainan Chen Xin 4 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Li Chen-Chu 5 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Yin Li 6 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Liu Lin 7 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Sun Qing-Hui 8 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Zhang Nan 9 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Chen Chui-Zhe 10 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan He Na 11 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Xia Qian-Feng 12 Key Laboratory of Tropical Translational Medicine of Ministry of Education and School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan Miao Wei-Guo 13 Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, Hainan Kung CT, Lee CH, Li CJ, Lu HI, Ko SF, Liu JW. Development of ceftazidime resistance in Burkholderia pseudomallei in a patient experiencing melioidosis with mediastinal lymphadenitis. Ann Acad Med Singapore 2010; 39(12): 945-947. Mohamad NI, Harun A, Hasan H, Deris Z. In-vitro activity of doxycycline and β-lactam combinations against different strains of Burkholderia pseudomallei. Indian J Microbiol 2018; 58(2): 244-247. Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant S, Chetchotisakd P, et al. Increasing incidence of human melioidosis in Northeast Thailand. Am J Trop Med Hyg 2010; 82(6): 1113-1117. Bond TEH, Sorenson AE, Schaeffer PM. Functional characterization of Burkholderia pseudomallei, biotin protein ligase: A toolkit for anti-melioidosis drug development. Microbiol Res 2017; 199: 40-48. Alatoom A, Elsayed H, Lawlor K, AbdelWareth L, El-Lababidi R, Cardona L, et al. Comparison of antimicrobial activity between ceftolozane-tazobactam and ceftazidime-avibactam against multidrug-resistant isolates of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Int J Infect Dis 2017; 62: 39-43. Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott BM, Moyes CL, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 2016; 1(1): 15008. Dutta S, Haq S, Hasan MR, Haq JA. Antimicrobial susceptibility pattern of clinical isolates of Burkholderia pseudomallei in Bangladesh. BMC Research Notes 2017; 10(1): 299. Platt R. Adverse effects of third-generation cephalosporins. J Antimicrob Chemother 1982; 10(Suppl C): 135-140. Ahmad N, Hashim R, Mohd Noor A. The in vitro antibiotic susceptibility of malaysian isolates of Burkholderia pseudomallei. Int J Microbiol 2013; 2013: 121845. Sarovich DS, Price EP, Von Schulze AT, Cook JM, Mayo M, Watson LM, et al. Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from Australia. PLoS One 2012; 7(2): e30789. Jenney AWJ, Lum G, Fisher DA, Currie BJ. Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int J Antimicrob Agents 2001; 17(2): 109-113. Thibault FM, Hernandez E, Vidal DR, Girardet M, Cavallo JD. Antibiotic susceptibility of 65 isolates of Burkholderia pseudomallei and Burkholderia mallei to 35 antimicrobial agents. J Antimicrob Chemother 2004; 54(6): 1134-1138. Wuthiekanun V, Amornchai P, Saiprom N, Chantratita N, Chierakul W, Koh GC, et al. Survey of antimicrobial resistance in clinical Burkholderia pseudomallei isolates over two decades in Northeast Thailand. Antimicrob Agents Chemother 2011; 55(11): 5388-5391. Behera B, Babu TP, Kamalesh A, Reddy G. Ceftazidime resistance in Burkholderia pseudomallei: First report from India. Asian Pac J Trop Med 2012; 5(4): 329-330. Blower RJ, Barksdale SM, van Hoek ML. Snake cathelicidin NA-CATH and smaller helical antimicrobial peptides are effective against Burkholderia thailandensis. PLoS Negl Trop Dis 2015; 9(7): e0003862. Dean SN, Bishop BM, Van HML. Susceptibility of Pseudomonas aeruginosa biofilm to alpha-helical peptides: D-enantiomer of LL-37. Front Microbiol 2011; 2: 128. Kampshoff F, Willcox MDP, Dutta D. A pilot study of the synergy between two antimicrobial peptides and two common antibiotics. Antibiotics (Basel) 2019; 8(2): E60. Dawson RM, Liu CQ. Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents. Crit Rev Microbiol 2008; 34(2): 89-107. Jin P, Wang H, Liu W, Fan Y, Miao W. A new cyclic lipopeptide isolated from Bacillus amyloliquefaciens HAB-2 and safety evaluation. Pestic Biochem Physiol 2018; 147: 40-45. Boottanun P, Potisap C, Hurdle JG, Sermswan RW. Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. Amb Express 2017; 7(1):16. Kang X, Fu Z, Rajaofera MJN, Li C, Zhang N, Liu L, et al. Whole-genome sequence of Burkholderia pseudomallei strain HNBP001, isolated from a melioidosis patient in Hainan, China. Microbiol Resour Announc 2019; 8(36): e00471-19. Liu L, Sun QH, Pei H, Chen CZ, Xiu H, Zhang N, et al. Multilocus sequence typing of Burkholderia pseudomallei collected in Hainan, China. Chin J Zoono 2019; 35(06): 514-517+524. Gay K, Robicsek A, Strahilevitz J, Park CH, Jacoby G, Barrett TJ, et al. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica. Clini Infect Dis 2006; 43(3): 297-304. Fu QY, Chen CY, Wu J, Wu Q, Qin X, Qian SY, et al. Establishment and evaluation of real-time PCR for rapid and quantitative detection of Burkholderia pseudomallei. J Third Mil Med Univ 2015; 17: 1734-1738. Serra C, Bouharkat B, Tir Touil-Meddah A, Guénin S, Mullié C. MexXY multidrug efflux system is more frequently overexpressed in ciprofloxacin resistant french clinical isolates compared to hospital environment ones. Front Microbiol 2019; 10: 366. Cai S, Chen Y, Song D, Kong J, Wu Y, Lu H. Study on the resistance mechanism via outer membrane protein OprD2 and metal ß-lactamase expression in the cell wall of Pseudomonas aeruginosa. Exp Ther Med 2016; 12(5): 2869-2872. Kamjumphol W, Chareonsudjai P, Chareonsudjai S. Antibacterial activity of chitosan against Burkholderia pseudomallei. Microbiologyopen 2018; 7(1). Doi: 10.1002/mbo3.534 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-AAC) method. Methods 2001; 25(4): 402-408. Baindara P, Mandal SM, Chawla N, Singh PK, Pinnaka AK, Korpole S. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample. AMB Express 2013; 3(1): 2. Chalhoub H, Sáenz Y, Nichols WW, Tulkens PM, Van Bambeke F. Loss of activity of ceftazidime-avibactam due to Mex-AB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa, isolated from patients suffering from cystic fibrosis. Int J Antimicrob Agents 2018; 52(5): 697-701. Verchère A, Picard M, Broutin I. Functional investigation of the MexA-MexB-OprM efflux pump of Pseudomonas aeruginosa. Biophysic J 2013; 104(2): 286a. Van Duin D, Lok JJ, Earley M, Cober E, Richter SS, Perez F. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clin Infect Dis 2018; 66(2): 163-171. Schweizer HP. Mechanisms of antibiotic resistance in Burkholderia pseudomallei: Implications for treatment of melioidosis. Future Microbiol 2012; 7(12): 1389-1399. Quinn JP, Darzins A, Miyashiro D, Ripp S, Miller RV. Imipenem resistance in Pseudomonas aeruginosa PAO: Mapping of the OprD2 gene. Antimicrob Agents Chemother 1991; 35(4): 753-755. Dong F, Xu XW, Song WQ, Lü P, Yang YH, Shen XZ. Analysis of resistant genes of beta-lactam antibiotics from Pseudomonas aeruginosa in pediatric patients. Zhonghua Yi Xue Za Zhi 2008; 88(42): 3012-3015. Shen J, Pan Y, Fang Y. Role of the outer membrane protein OprD2 in carbapenem-resistance mechanisms of Pseudomonas aeruginosa. PLoS One 2015; 10(10): e0139995. Georges B, Conil JM, Dubouix A, Archambaud M, Bonnet E, Saivin S, et al. Risk of emergence of Pseudomonas aeruginosa resistance to ß-lactam antibiotics in intensive care units. Crit Care Med 2006; 34(6): 1636-1641. Literak I, Dolejska M, Janoszowska D, Hrusakova J, Meissner W, Rzyska H, et al. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland. Appl Environ Microb 2010; 76(24): 8126-8134. Wang J, Zhang X, Sun G, Wang Q, Lu L, Feng X, et al. Utility of multiple-locus variant-repeat analysis method for the outbreak of the Pseudomonas aeruginosa isolates. Clin Lab 2014; 60(7): 1217-1223. El-Badawy MF, Alrobaian MM, Shohayeb MM, Abdelwahab SF. Investigation of six plasmid-mediated quinolone resistance genes among clinical isolates of pseudomonas: A genotypic study in Saudi Arabia. Infect Drug Resist 2019; 12: 915-923. Martín-Gutiérrez G, Rodríguez-Martínez JM, Pascual Á, Rodríguez-Beltrán J, Blázquez J. Plasmidic qnr genes confer clinical resistance to ciprofloxacin under urinary tract physiological conditions. Antimicrob Agents Chemother 2017; 61(4): e02615-e02616. Paiva MC, Reis MP, Costa PS, Dias MF, Bleicher L, Scholte LLS, et al. Identification of new bacteria harboring qnrS and aac(6')-Ib/cr and mutations possibly involved in fluoroquinolone resistance in raw sewage and activated sludge samples from a full-scale WWTP. Water Res 2017; 110: 27-37.
9.Differences in serum ferritin and vitamin D levels of Korean women with obesity and severe obesity
Nan Hui KANG ; Ji Sook PARK ; Hongchan LEE ; Jung-Eun YIM
Journal of Nutrition and Health 2020;53(4):381-389
Purpose:
This study examined the relationships among serum ferritin, vitamin D, folate, iron, and vitamin B12 as indicators of obesity. The results provide the basic data for the prevention and treatment of obese and severely obese people.
Methods:
This study selected 44 people from 18 years of age or older to 59 years. This study used the indicators of the body mass index (BMI) to analyze obesity as the obesity group (BMI of 25.0–29.9 kg/m2 ) and as the severe obesity group (BMI ≥ 30.0 kg/m2 ). Of the 44 subjects, 23 and 21 subjects were in the obesity and severe obesity groups, respectively. Their height, weight, body fat, skeletal muscle mass measured using bioimpedance analysis, and measured serum nutrients and biochemical parameters.
Results:
The obesity group showed a significantly lower age, body weight, BMI and body composition, body fat mass, and body fat percentage, and the height was significantly lower in the severe obesity group. The results of the biochemical parameters of the subjects showed that the levels of aspartate transaminase, alanine transaminase, hemoglobin A1c, total cholesterol, and triglyceride were within the normal range, and there was no significant difference between the 2 groups. The levels of folate, vitamin B12 , 25-hydroxyvitamin D3 , iron, and ferritin were almost normal, and there was no significant difference between the 2 groups.
Conclusion
This study revealed an association with the serum nutrients and obesity, but there was no difference between the obesity group and severe obesity group. Observations of the nutrient levels in not only the blood in obesity and severe obesity but also in red blood cells and tissues will be necessary.
10.Investigation of pathogenic agents causing acute respiratory tract infections in pediatric patients in a children′s hospital assigned for case screening in Beijing during the outbreak of COVID-19
Linqing ZHAO ; Li DENG ; Ling CAO ; Dongmei CHEN ; Yu SUN ; Runan ZHU ; Fang WANG ; Qi GUO ; Yutong ZHOU ; Liping JIA ; Hui HUANG ; Xiaohui KANG ; Fenghua JIN ; Yi YUAN ; Nan ZHANG ; Ri DE ; Yuan QIAN
Chinese Journal of Pediatrics 2020;58(8):635-639
Objective:To investigate the spectrum of pathogenic agents in pediatric patients with acute respiratory infections (ARI) during the outbreak of coronavirus infectious diseases 2019 (COVID-19).Methods:Three groups of children were enrolled into the prospective study during January 20 to February 20, 2020 from Capital Institute of Pediatrics, including children in the exposed group with ARI and epidemiological history associated with COVID-19 from whom both pharyngeal and nasopharyngeal swabs were collected, children in the ARI group without COVID-19 associated epidemiological history and children in the screening group for hospital admission, with neither COVID-19 associated epidemiological history nor ARI. Only nasopharyngeal swabs were collected in the ARI group and screening group. Each group is expected to include at least 30 cases. All specimens were tested for 2019-nCoV nucleic acid by two diagnostic kits from different manufacturers. All nasopharyngeal swabs were tested for multiple respiratory pathogens, whilst the results from the ARI group were compared with that in the correspondence periods of 2019 and 2018 used by t or χ 2 test. Results:A total of 244 children were enrolled into three groups, including 139 males and 105 females, the age was (5±4) years. The test of 2019-nCoV nucleic acid were negative in all children, and high positive rates of pathogens were detected in exposed (69.4%, 25/36) and ARI (55.3%, 73/132) groups, with the highest positive rate for mycoplasma pneumoniae (MP) (19.4%, 7/36 and 17.4%, 23/132, respectively), followed by human metapneumovirus (hMPV) (16.7%, 6/36 and 9.8%, 13/132, respectively). The positive rate (11.8%, 9/76) of pathogens in the screening group was low. In the same period of 2019, the positive rate of pathogens was 83.7% (77/92), with the highest rates for respiratory syncytial virus (RSV) A (29.3%, 27/92), followed by influenza virus (Flu) A (H1N1) (19.6%, 18/92) and adenovirus (ADV) (14.1%, 13/92), which showed significant difference with the positive rates of the three viruses in 2020 (RSV A: χ 2=27.346, P<0.01; FluA (H1N1): χ 2=28.083, P<0.01; ADV: χ 2=7.848, P=0.005) . In 2018, the positive rate of pathogens was 61.0% (50/82), with the highest rate for human bocavirus (HBoV) (13.4%, 11/82) and followed by ADV (11.0%, 9/82), and significant difference was shown in the positive rate of HBoV with that in 2020 (χ 2=6.776, P=0.009). Conclusions:The infection rate of 2019-nCoV is low among children in Beijing with no family clustering or no close contact, even with epidemiological history. The spectrum of pathogens of ARI in children during the research period is quite different from that in the previous years when the viral infections were dominant. MP is the highest positively detected one among the main pathogens during the outbreak of COVID-19 in Beijing where there is no main outbreak area.

Result Analysis
Print
Save
E-mail