1.Discrepancies in Dapagliflozin Response in Terms of Glycemic Control and Body Weight Reduction
Ji Eun JUN ; Kyoung-Ah KIM ; Nan-Hee KIM ; Kwan-Woo LEE ; In-Kyung JEONG ;
Endocrinology and Metabolism 2025;40(2):278-288
Background:
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces hyperglycemia and obesity by inhibiting renal glucose reabsorption. This post hoc study evaluated clinical factors influencing patient response to dapagliflozin.
Methods:
The analysis focused on patients treated with dapagliflozin (10 mg/day for 52 weeks) within the randomized, double-blind, parallel-group BEYOND trial. Adequate glycemic control (GC) was defined as a reduction in glycated hemoglobin (HbA1c) of ≥ 1.0% or the achievement of an HbA1c level <7.0% at week 52. Significant weight loss (WL) referred to a reduction in body weight of ≥3.0% at week 52. Participants were classified into four groups based on their GC and WL responses: GC+/WL+, GC+/WL−, GC−/WL+, and GC−/WL−.
Results:
Among dapagliflozin recipients (n=56), at 52 weeks, HbA1c had decreased by 1.0%±0.8% from baseline, while body weight had declined by 2.4±3.1 kg. Overall, 69.6% of participants achieved GC+, and 57.1% achieved WL+. Male sex and shorter diabetes duration were significantly associated with achieving GC+. Conversely, higher estimated glomerular filtration rate was significantly linked to WL+. The only factor significantly associated with both GC+ and WL+ was shorter diabetes duration (odds ratio, 0.81; 95% confidence interval, 0.68 to 0.97; P=0.023). The GC+ and WL+ groups exhibited favorable responses beginning soon after dapagliflozin therapy was initiated. Furthermore, HbA1c decline was more strongly associated with reduction in visceral fat than with WL.
Conclusion
A short duration of diabetes and early response to treatment appear to represent key factors in maximizing the benefits of dapagliflozin for blood glucose and weight management.
2.Discrepancies in Dapagliflozin Response in Terms of Glycemic Control and Body Weight Reduction
Ji Eun JUN ; Kyoung-Ah KIM ; Nan-Hee KIM ; Kwan-Woo LEE ; In-Kyung JEONG ;
Endocrinology and Metabolism 2025;40(2):278-288
Background:
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces hyperglycemia and obesity by inhibiting renal glucose reabsorption. This post hoc study evaluated clinical factors influencing patient response to dapagliflozin.
Methods:
The analysis focused on patients treated with dapagliflozin (10 mg/day for 52 weeks) within the randomized, double-blind, parallel-group BEYOND trial. Adequate glycemic control (GC) was defined as a reduction in glycated hemoglobin (HbA1c) of ≥ 1.0% or the achievement of an HbA1c level <7.0% at week 52. Significant weight loss (WL) referred to a reduction in body weight of ≥3.0% at week 52. Participants were classified into four groups based on their GC and WL responses: GC+/WL+, GC+/WL−, GC−/WL+, and GC−/WL−.
Results:
Among dapagliflozin recipients (n=56), at 52 weeks, HbA1c had decreased by 1.0%±0.8% from baseline, while body weight had declined by 2.4±3.1 kg. Overall, 69.6% of participants achieved GC+, and 57.1% achieved WL+. Male sex and shorter diabetes duration were significantly associated with achieving GC+. Conversely, higher estimated glomerular filtration rate was significantly linked to WL+. The only factor significantly associated with both GC+ and WL+ was shorter diabetes duration (odds ratio, 0.81; 95% confidence interval, 0.68 to 0.97; P=0.023). The GC+ and WL+ groups exhibited favorable responses beginning soon after dapagliflozin therapy was initiated. Furthermore, HbA1c decline was more strongly associated with reduction in visceral fat than with WL.
Conclusion
A short duration of diabetes and early response to treatment appear to represent key factors in maximizing the benefits of dapagliflozin for blood glucose and weight management.
3.Discrepancies in Dapagliflozin Response in Terms of Glycemic Control and Body Weight Reduction
Ji Eun JUN ; Kyoung-Ah KIM ; Nan-Hee KIM ; Kwan-Woo LEE ; In-Kyung JEONG ;
Endocrinology and Metabolism 2025;40(2):278-288
Background:
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces hyperglycemia and obesity by inhibiting renal glucose reabsorption. This post hoc study evaluated clinical factors influencing patient response to dapagliflozin.
Methods:
The analysis focused on patients treated with dapagliflozin (10 mg/day for 52 weeks) within the randomized, double-blind, parallel-group BEYOND trial. Adequate glycemic control (GC) was defined as a reduction in glycated hemoglobin (HbA1c) of ≥ 1.0% or the achievement of an HbA1c level <7.0% at week 52. Significant weight loss (WL) referred to a reduction in body weight of ≥3.0% at week 52. Participants were classified into four groups based on their GC and WL responses: GC+/WL+, GC+/WL−, GC−/WL+, and GC−/WL−.
Results:
Among dapagliflozin recipients (n=56), at 52 weeks, HbA1c had decreased by 1.0%±0.8% from baseline, while body weight had declined by 2.4±3.1 kg. Overall, 69.6% of participants achieved GC+, and 57.1% achieved WL+. Male sex and shorter diabetes duration were significantly associated with achieving GC+. Conversely, higher estimated glomerular filtration rate was significantly linked to WL+. The only factor significantly associated with both GC+ and WL+ was shorter diabetes duration (odds ratio, 0.81; 95% confidence interval, 0.68 to 0.97; P=0.023). The GC+ and WL+ groups exhibited favorable responses beginning soon after dapagliflozin therapy was initiated. Furthermore, HbA1c decline was more strongly associated with reduction in visceral fat than with WL.
Conclusion
A short duration of diabetes and early response to treatment appear to represent key factors in maximizing the benefits of dapagliflozin for blood glucose and weight management.
4.Discrepancies in Dapagliflozin Response in Terms of Glycemic Control and Body Weight Reduction
Ji Eun JUN ; Kyoung-Ah KIM ; Nan-Hee KIM ; Kwan-Woo LEE ; In-Kyung JEONG ;
Endocrinology and Metabolism 2025;40(2):278-288
Background:
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces hyperglycemia and obesity by inhibiting renal glucose reabsorption. This post hoc study evaluated clinical factors influencing patient response to dapagliflozin.
Methods:
The analysis focused on patients treated with dapagliflozin (10 mg/day for 52 weeks) within the randomized, double-blind, parallel-group BEYOND trial. Adequate glycemic control (GC) was defined as a reduction in glycated hemoglobin (HbA1c) of ≥ 1.0% or the achievement of an HbA1c level <7.0% at week 52. Significant weight loss (WL) referred to a reduction in body weight of ≥3.0% at week 52. Participants were classified into four groups based on their GC and WL responses: GC+/WL+, GC+/WL−, GC−/WL+, and GC−/WL−.
Results:
Among dapagliflozin recipients (n=56), at 52 weeks, HbA1c had decreased by 1.0%±0.8% from baseline, while body weight had declined by 2.4±3.1 kg. Overall, 69.6% of participants achieved GC+, and 57.1% achieved WL+. Male sex and shorter diabetes duration were significantly associated with achieving GC+. Conversely, higher estimated glomerular filtration rate was significantly linked to WL+. The only factor significantly associated with both GC+ and WL+ was shorter diabetes duration (odds ratio, 0.81; 95% confidence interval, 0.68 to 0.97; P=0.023). The GC+ and WL+ groups exhibited favorable responses beginning soon after dapagliflozin therapy was initiated. Furthermore, HbA1c decline was more strongly associated with reduction in visceral fat than with WL.
Conclusion
A short duration of diabetes and early response to treatment appear to represent key factors in maximizing the benefits of dapagliflozin for blood glucose and weight management.
5.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
6.Association of Succinate and Adenosine Nucleotide Metabolic Pathways with Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus
Inha JUNG ; Seungyoon NAM ; Da Young LEE ; So Young PARK ; Ji Hee YU ; Ji A SEO ; Dae Ho LEE ; Nan Hee KIM
Diabetes & Metabolism Journal 2024;48(6):1126-1134
Background:
Although the prevalence of diabetic kidney disease (DKD) is increasing, reliable biomarkers for its early detection are scarce. This study aimed to evaluate the association of adenosine and succinate levels and their related pathways, including hyaluronic acid (HA) synthesis, with DKD.
Methods:
We examined 235 participants and categorized them into three groups: healthy controls; those with diabetes but without DKD; and those with DKD, which was defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. We compared the concentrations of urinary adenosine, succinate, and HA and the serum levels of cluster of differentiation 39 (CD39) and CD73, which are involved in adenosine generation, among the groups with DKD or albuminuria. In addition, we performed multiple logistic regression analysis to evaluate the independent association of DKD or albuminuria with the metabolites after adjusting for risk factors. We also showed the association of these metabolites with eGFR measured several years before enrollment. This study was registered with the Clinical Research Information Service (https://cris.nih.go.kr; Registration number: KCT0003573).
Results:
Urinary succinate and serum CD39 levels were higher in the DKD group than in the control and non-DKD groups. Correlation analysis consistently linked urinary succinate and serum CD39 concentrations with eGFR, albuminuria, and ΔeGFR, which was calculated retrospectively. However, among the various metabolites studied, only urinary succinate was identified as an independent indicator of DKD and albuminuria.
Conclusion
Among several potential metabolites, only urinary succinate was independently associated with DKD. These findings hold promise for clinical application in the management of DKD.
7.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
8.Association of Succinate and Adenosine Nucleotide Metabolic Pathways with Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus
Inha JUNG ; Seungyoon NAM ; Da Young LEE ; So Young PARK ; Ji Hee YU ; Ji A SEO ; Dae Ho LEE ; Nan Hee KIM
Diabetes & Metabolism Journal 2024;48(6):1126-1134
Background:
Although the prevalence of diabetic kidney disease (DKD) is increasing, reliable biomarkers for its early detection are scarce. This study aimed to evaluate the association of adenosine and succinate levels and their related pathways, including hyaluronic acid (HA) synthesis, with DKD.
Methods:
We examined 235 participants and categorized them into three groups: healthy controls; those with diabetes but without DKD; and those with DKD, which was defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. We compared the concentrations of urinary adenosine, succinate, and HA and the serum levels of cluster of differentiation 39 (CD39) and CD73, which are involved in adenosine generation, among the groups with DKD or albuminuria. In addition, we performed multiple logistic regression analysis to evaluate the independent association of DKD or albuminuria with the metabolites after adjusting for risk factors. We also showed the association of these metabolites with eGFR measured several years before enrollment. This study was registered with the Clinical Research Information Service (https://cris.nih.go.kr; Registration number: KCT0003573).
Results:
Urinary succinate and serum CD39 levels were higher in the DKD group than in the control and non-DKD groups. Correlation analysis consistently linked urinary succinate and serum CD39 concentrations with eGFR, albuminuria, and ΔeGFR, which was calculated retrospectively. However, among the various metabolites studied, only urinary succinate was identified as an independent indicator of DKD and albuminuria.
Conclusion
Among several potential metabolites, only urinary succinate was independently associated with DKD. These findings hold promise for clinical application in the management of DKD.
9.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
10.Association of Succinate and Adenosine Nucleotide Metabolic Pathways with Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus
Inha JUNG ; Seungyoon NAM ; Da Young LEE ; So Young PARK ; Ji Hee YU ; Ji A SEO ; Dae Ho LEE ; Nan Hee KIM
Diabetes & Metabolism Journal 2024;48(6):1126-1134
Background:
Although the prevalence of diabetic kidney disease (DKD) is increasing, reliable biomarkers for its early detection are scarce. This study aimed to evaluate the association of adenosine and succinate levels and their related pathways, including hyaluronic acid (HA) synthesis, with DKD.
Methods:
We examined 235 participants and categorized them into three groups: healthy controls; those with diabetes but without DKD; and those with DKD, which was defined as estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2. We compared the concentrations of urinary adenosine, succinate, and HA and the serum levels of cluster of differentiation 39 (CD39) and CD73, which are involved in adenosine generation, among the groups with DKD or albuminuria. In addition, we performed multiple logistic regression analysis to evaluate the independent association of DKD or albuminuria with the metabolites after adjusting for risk factors. We also showed the association of these metabolites with eGFR measured several years before enrollment. This study was registered with the Clinical Research Information Service (https://cris.nih.go.kr; Registration number: KCT0003573).
Results:
Urinary succinate and serum CD39 levels were higher in the DKD group than in the control and non-DKD groups. Correlation analysis consistently linked urinary succinate and serum CD39 concentrations with eGFR, albuminuria, and ΔeGFR, which was calculated retrospectively. However, among the various metabolites studied, only urinary succinate was identified as an independent indicator of DKD and albuminuria.
Conclusion
Among several potential metabolites, only urinary succinate was independently associated with DKD. These findings hold promise for clinical application in the management of DKD.

Result Analysis
Print
Save
E-mail