1.Genetic Landscape and Clinical Manifestations of Multiple Endocrine Neoplasia Type 1 in a Korean Cohort: A Multicenter Retrospective Analysis
Boram KIM ; Seung Hun LEE ; Chang Ho AHN ; Han Na JANG ; Sung Im CHO ; Jee-Soo LEE ; Yu-Mi LEE ; Su-Jin KIM ; Tae-Yon SUNG ; Kyu Eun LEE ; Woochang LEE ; Jung-Min KOH ; Moon-Woo SEONG ; Jung Hee KIM
Endocrinology and Metabolism 2024;39(6):956-964
Background:
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by tumors in multiple endocrine organs, caused by variants in the MEN1 gene. This study analyzed the clinical and genetic features of MEN1 in a Korean cohort, identifying prevalent manifestations and genetic variants, including novel variants.
Methods:
This multicenter retrospective study reviewed the medical records of 117 MEN1 patients treated at three tertiary centers in Korea between January 2012 and September 2022. Patient demographics, tumor manifestations, outcomes, and MEN1 genetic testing results were collected. Variants were classified using American College of Medical Genetics and Genomics (ACMG) and French Oncogenetics Network of Neuroendocrine Tumors propositions (TENGEN) guidelines.
Results:
A total of 117 patients were enrolled, including 55 familial cases, with a mean age at diagnosis of 37.4±15.3 years. Primary hyperparathyroidism was identified as the most common presentation (84.6%). The prevalence of gastroenteropancreatic neuroendocrine tumor and pituitary neuroendocrine tumor (PitNET) was 77.8% (n=91) and 56.4% (n=66), respectively. Genetic testing revealed 61 distinct MEN1 variants in 101 patients, with 18 being novel. Four variants were reclassified according to the TENGEN guidelines. Patients with truncating variants (n=72) exhibited a higher prevalence of PitNETs compared to those with non-truncating variants (n=25) (59.7% vs. 36.0%, P=0.040).
Conclusion
The association between truncating variants and an increased prevalence of PitNETs in MEN1 underscores the importance of genetic characterization in guiding the clinical management of this disease. Our study sheds light on the clinical and genetic characteristics of MEN1 among the Korean population.
2.The Multi-targeted Effect of Fascaplysin on the Proliferation and Dedifferentiation of Schwann Cells Inhibits Peripheral Nerve Degeneration by Blocking CDK4/6 and Androgen Receptor
Hyung-Joo CHUNG ; Ja-Eun KIM ; Youngbuhm HUH ; Jin San LEE ; So-Woon KIM ; Kiyong NA ; Jiwon KIM ; Seung Hyeun LEE ; Hiroyuki KONISHI ; Seung Geun YEO ; Dong Keon YON ; Dokyoung KIM ; Junyang JUNG ; Na Young JEONG
Experimental Neurobiology 2024;33(6):266-281
Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND. However, because PND involves multiple biochemical events in Schwann cells, a one-drug-single-target therapeutic strategy is not feasible for PND. Here, we suggested that fascaplysin (Fas), a compound with multiple targets (CDK4/6), could overcome these problems. Fas exerted a significant inhibitory effect on axonal degradation, demyelination, and Schwann cell proliferation and dedifferentiation during in vitro and ex vivo PND. To discover the most likely novel target for PND, a chemo-bioinformatics analysis predicted the other on-targets of Fas and identified androgen receptor (AR) which were involved in Schwann cell differentiation and proliferation.AR interacted with Fas, and nuclear import of the AR/Fas complex was inhibited in Schwann cells, altering the expression patterns of transcription factors during PND. Therefore, Fas may have therapeutic potential for irreversible peripheral neurodegenerative diseases.
3.Genetic Landscape and Clinical Manifestations of Multiple Endocrine Neoplasia Type 1 in a Korean Cohort: A Multicenter Retrospective Analysis
Boram KIM ; Seung Hun LEE ; Chang Ho AHN ; Han Na JANG ; Sung Im CHO ; Jee-Soo LEE ; Yu-Mi LEE ; Su-Jin KIM ; Tae-Yon SUNG ; Kyu Eun LEE ; Woochang LEE ; Jung-Min KOH ; Moon-Woo SEONG ; Jung Hee KIM
Endocrinology and Metabolism 2024;39(6):956-964
Background:
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by tumors in multiple endocrine organs, caused by variants in the MEN1 gene. This study analyzed the clinical and genetic features of MEN1 in a Korean cohort, identifying prevalent manifestations and genetic variants, including novel variants.
Methods:
This multicenter retrospective study reviewed the medical records of 117 MEN1 patients treated at three tertiary centers in Korea between January 2012 and September 2022. Patient demographics, tumor manifestations, outcomes, and MEN1 genetic testing results were collected. Variants were classified using American College of Medical Genetics and Genomics (ACMG) and French Oncogenetics Network of Neuroendocrine Tumors propositions (TENGEN) guidelines.
Results:
A total of 117 patients were enrolled, including 55 familial cases, with a mean age at diagnosis of 37.4±15.3 years. Primary hyperparathyroidism was identified as the most common presentation (84.6%). The prevalence of gastroenteropancreatic neuroendocrine tumor and pituitary neuroendocrine tumor (PitNET) was 77.8% (n=91) and 56.4% (n=66), respectively. Genetic testing revealed 61 distinct MEN1 variants in 101 patients, with 18 being novel. Four variants were reclassified according to the TENGEN guidelines. Patients with truncating variants (n=72) exhibited a higher prevalence of PitNETs compared to those with non-truncating variants (n=25) (59.7% vs. 36.0%, P=0.040).
Conclusion
The association between truncating variants and an increased prevalence of PitNETs in MEN1 underscores the importance of genetic characterization in guiding the clinical management of this disease. Our study sheds light on the clinical and genetic characteristics of MEN1 among the Korean population.
4.The Multi-targeted Effect of Fascaplysin on the Proliferation and Dedifferentiation of Schwann Cells Inhibits Peripheral Nerve Degeneration by Blocking CDK4/6 and Androgen Receptor
Hyung-Joo CHUNG ; Ja-Eun KIM ; Youngbuhm HUH ; Jin San LEE ; So-Woon KIM ; Kiyong NA ; Jiwon KIM ; Seung Hyeun LEE ; Hiroyuki KONISHI ; Seung Geun YEO ; Dong Keon YON ; Dokyoung KIM ; Junyang JUNG ; Na Young JEONG
Experimental Neurobiology 2024;33(6):266-281
Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND. However, because PND involves multiple biochemical events in Schwann cells, a one-drug-single-target therapeutic strategy is not feasible for PND. Here, we suggested that fascaplysin (Fas), a compound with multiple targets (CDK4/6), could overcome these problems. Fas exerted a significant inhibitory effect on axonal degradation, demyelination, and Schwann cell proliferation and dedifferentiation during in vitro and ex vivo PND. To discover the most likely novel target for PND, a chemo-bioinformatics analysis predicted the other on-targets of Fas and identified androgen receptor (AR) which were involved in Schwann cell differentiation and proliferation.AR interacted with Fas, and nuclear import of the AR/Fas complex was inhibited in Schwann cells, altering the expression patterns of transcription factors during PND. Therefore, Fas may have therapeutic potential for irreversible peripheral neurodegenerative diseases.
5.Genetic Landscape and Clinical Manifestations of Multiple Endocrine Neoplasia Type 1 in a Korean Cohort: A Multicenter Retrospective Analysis
Boram KIM ; Seung Hun LEE ; Chang Ho AHN ; Han Na JANG ; Sung Im CHO ; Jee-Soo LEE ; Yu-Mi LEE ; Su-Jin KIM ; Tae-Yon SUNG ; Kyu Eun LEE ; Woochang LEE ; Jung-Min KOH ; Moon-Woo SEONG ; Jung Hee KIM
Endocrinology and Metabolism 2024;39(6):956-964
Background:
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by tumors in multiple endocrine organs, caused by variants in the MEN1 gene. This study analyzed the clinical and genetic features of MEN1 in a Korean cohort, identifying prevalent manifestations and genetic variants, including novel variants.
Methods:
This multicenter retrospective study reviewed the medical records of 117 MEN1 patients treated at three tertiary centers in Korea between January 2012 and September 2022. Patient demographics, tumor manifestations, outcomes, and MEN1 genetic testing results were collected. Variants were classified using American College of Medical Genetics and Genomics (ACMG) and French Oncogenetics Network of Neuroendocrine Tumors propositions (TENGEN) guidelines.
Results:
A total of 117 patients were enrolled, including 55 familial cases, with a mean age at diagnosis of 37.4±15.3 years. Primary hyperparathyroidism was identified as the most common presentation (84.6%). The prevalence of gastroenteropancreatic neuroendocrine tumor and pituitary neuroendocrine tumor (PitNET) was 77.8% (n=91) and 56.4% (n=66), respectively. Genetic testing revealed 61 distinct MEN1 variants in 101 patients, with 18 being novel. Four variants were reclassified according to the TENGEN guidelines. Patients with truncating variants (n=72) exhibited a higher prevalence of PitNETs compared to those with non-truncating variants (n=25) (59.7% vs. 36.0%, P=0.040).
Conclusion
The association between truncating variants and an increased prevalence of PitNETs in MEN1 underscores the importance of genetic characterization in guiding the clinical management of this disease. Our study sheds light on the clinical and genetic characteristics of MEN1 among the Korean population.
6.The Multi-targeted Effect of Fascaplysin on the Proliferation and Dedifferentiation of Schwann Cells Inhibits Peripheral Nerve Degeneration by Blocking CDK4/6 and Androgen Receptor
Hyung-Joo CHUNG ; Ja-Eun KIM ; Youngbuhm HUH ; Jin San LEE ; So-Woon KIM ; Kiyong NA ; Jiwon KIM ; Seung Hyeun LEE ; Hiroyuki KONISHI ; Seung Geun YEO ; Dong Keon YON ; Dokyoung KIM ; Junyang JUNG ; Na Young JEONG
Experimental Neurobiology 2024;33(6):266-281
Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND. However, because PND involves multiple biochemical events in Schwann cells, a one-drug-single-target therapeutic strategy is not feasible for PND. Here, we suggested that fascaplysin (Fas), a compound with multiple targets (CDK4/6), could overcome these problems. Fas exerted a significant inhibitory effect on axonal degradation, demyelination, and Schwann cell proliferation and dedifferentiation during in vitro and ex vivo PND. To discover the most likely novel target for PND, a chemo-bioinformatics analysis predicted the other on-targets of Fas and identified androgen receptor (AR) which were involved in Schwann cell differentiation and proliferation.AR interacted with Fas, and nuclear import of the AR/Fas complex was inhibited in Schwann cells, altering the expression patterns of transcription factors during PND. Therefore, Fas may have therapeutic potential for irreversible peripheral neurodegenerative diseases.
7.Genetic Landscape and Clinical Manifestations of Multiple Endocrine Neoplasia Type 1 in a Korean Cohort: A Multicenter Retrospective Analysis
Boram KIM ; Seung Hun LEE ; Chang Ho AHN ; Han Na JANG ; Sung Im CHO ; Jee-Soo LEE ; Yu-Mi LEE ; Su-Jin KIM ; Tae-Yon SUNG ; Kyu Eun LEE ; Woochang LEE ; Jung-Min KOH ; Moon-Woo SEONG ; Jung Hee KIM
Endocrinology and Metabolism 2024;39(6):956-964
Background:
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by tumors in multiple endocrine organs, caused by variants in the MEN1 gene. This study analyzed the clinical and genetic features of MEN1 in a Korean cohort, identifying prevalent manifestations and genetic variants, including novel variants.
Methods:
This multicenter retrospective study reviewed the medical records of 117 MEN1 patients treated at three tertiary centers in Korea between January 2012 and September 2022. Patient demographics, tumor manifestations, outcomes, and MEN1 genetic testing results were collected. Variants were classified using American College of Medical Genetics and Genomics (ACMG) and French Oncogenetics Network of Neuroendocrine Tumors propositions (TENGEN) guidelines.
Results:
A total of 117 patients were enrolled, including 55 familial cases, with a mean age at diagnosis of 37.4±15.3 years. Primary hyperparathyroidism was identified as the most common presentation (84.6%). The prevalence of gastroenteropancreatic neuroendocrine tumor and pituitary neuroendocrine tumor (PitNET) was 77.8% (n=91) and 56.4% (n=66), respectively. Genetic testing revealed 61 distinct MEN1 variants in 101 patients, with 18 being novel. Four variants were reclassified according to the TENGEN guidelines. Patients with truncating variants (n=72) exhibited a higher prevalence of PitNETs compared to those with non-truncating variants (n=25) (59.7% vs. 36.0%, P=0.040).
Conclusion
The association between truncating variants and an increased prevalence of PitNETs in MEN1 underscores the importance of genetic characterization in guiding the clinical management of this disease. Our study sheds light on the clinical and genetic characteristics of MEN1 among the Korean population.
8.The Multi-targeted Effect of Fascaplysin on the Proliferation and Dedifferentiation of Schwann Cells Inhibits Peripheral Nerve Degeneration by Blocking CDK4/6 and Androgen Receptor
Hyung-Joo CHUNG ; Ja-Eun KIM ; Youngbuhm HUH ; Jin San LEE ; So-Woon KIM ; Kiyong NA ; Jiwon KIM ; Seung Hyeun LEE ; Hiroyuki KONISHI ; Seung Geun YEO ; Dong Keon YON ; Dokyoung KIM ; Junyang JUNG ; Na Young JEONG
Experimental Neurobiology 2024;33(6):266-281
Peripheral neurodegenerative diseases induced by irreversible peripheral nerve degeneration (PND), such as diabetic peripheral neuropathy, have a high prevalence worldwide and reduce the quality of life. However, there is no agent effective against the irreversible PND. After peripheral nerve injury, Schwann cells play an important role in regulating PND. However, because PND involves multiple biochemical events in Schwann cells, a one-drug-single-target therapeutic strategy is not feasible for PND. Here, we suggested that fascaplysin (Fas), a compound with multiple targets (CDK4/6), could overcome these problems. Fas exerted a significant inhibitory effect on axonal degradation, demyelination, and Schwann cell proliferation and dedifferentiation during in vitro and ex vivo PND. To discover the most likely novel target for PND, a chemo-bioinformatics analysis predicted the other on-targets of Fas and identified androgen receptor (AR) which were involved in Schwann cell differentiation and proliferation.AR interacted with Fas, and nuclear import of the AR/Fas complex was inhibited in Schwann cells, altering the expression patterns of transcription factors during PND. Therefore, Fas may have therapeutic potential for irreversible peripheral neurodegenerative diseases.
9.Metastatic intestinal adenocarcinoma with osseous metaplasia in two Domestic Korean Shorthair cats
Jae-Ha JUNG ; Na-Yon KIM ; Yeseul YANG ; Dansong SEO ; Goeun CHOI ; Hyunki HONG ; Taeseong MOON ; Hyeong-Mok KIM ; Jihee HAN ; Jihee HONG ; Yongbaek KIM
Journal of Veterinary Science 2023;24(5):e64-
Two Domestic Korean Shorthair cats presented with dyschezia and vomiting. Computed tomography revealed a colonic mass with calcification and lymph node metastasis in case 1, and a small intestinal mass with disseminated mesenteric metastasis and calcification in case 2. Histopathology revealed intestinal adenocarcinoma with osseous metaplasia. Case 1 died two months after surgery from distant metastasis; and case 2 showed no metastasis for five months but presented with anorexia, euthanized seven months after diagnosis. Metastatic intestinal adenocarcinoma with bone formation should be considered as differential diagnosis for calcification on imaging, and lymph node metastasis at diagnosis may indicate poor prognosis.
10.A standardized pathology report for gastric cancer: 2nd edition
Young Soo PARK ; Myeong-Cherl KOOK ; Baek-hui KIM ; Hye Seung LEE ; Dong-Wook KANG ; Mi-Jin GU ; Ok Ran SHIN ; Younghee CHOI ; Wonae LEE ; Hyunki KIM ; In Hye SONG ; Kyoung-Mee KIM ; Hee Sung KIM ; Guhyun KANG ; Do Youn PARK ; So-Young JIN ; Joon Mee KIM ; Yoon Jung CHOI ; Hee Kyung CHANG ; Soomin AHN ; Mee Soo CHANG ; Song-Hee HAN ; Yoonjin KWAK ; An Na SEO ; Sung Hak LEE ; Mee-Yon CHO ;
Journal of Pathology and Translational Medicine 2023;57(1):1-27
The first edition of ‘A Standardized Pathology Report for Gastric Cancer’ was initiated by the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists and published 17 years ago. Since then, significant advances have been made in the pathologic diagnosis, molecular genetics, and management of gastric cancer (GC). To reflect those changes, a committee for publishing a second edition of the report was formed within the Gastrointestinal Pathology Study Group of the Korean Society of Pathologists. This second edition consists of two parts: standard data elements and conditional data elements. The standard data elements contain the basic pathologic findings and items necessary to predict the prognosis of GC patients, and they are adequate for routine surgical pathology service. Other diagnostic and prognostic factors relevant to adjuvant therapy, including molecular biomarkers, are classified as conditional data elements to allow each pathologist to selectively choose items appropriate to the environment in their institution. We trust that the standardized pathology report will be helpful for GC diagnosis and facilitate large-scale multidisciplinary collaborative studies.

Result Analysis
Print
Save
E-mail