1.Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma.
Yan ZHANG ; Baoyuan ZHANG ; Yongyun LI ; Yuting DAI ; Jiaoyang LI ; Donghe LI ; Zhizhou XIA ; Jianming ZHANG ; Ping LIU ; Ming CHEN ; Bo JIAO ; Ruibao REN
Frontiers of Medicine 2022;16(5):784-798
More than 85% of patients with uveal melanoma (UM) carry a GNAQ or GNA11 mutation at a hotspot codon (Q209) that encodes G protein α subunit q/11 polypeptides (Gαq/11). GNAQ/11 relies on palmitoylation for membrane association and signal transduction. Despite the palmitoylation of GNAQ/11 was discovered long before, its implication in UM remains unclear. Here, results of palmitoylation-targeted mutagenesis and chemical interference approaches revealed that the loss of GNAQ/11 palmitoylation substantially affected tumor cell proliferation and survival in UM cells. Palmitoylation inhibition through the mutation of palmitoylation sites suppressed GNAQ/11Q209L-induced malignant transformation in NIH3T3 cells. Importantly, the palmitoylation-deficient oncogenic GNAQ/11 failed to rescue the cell death initiated by the knock down of endogenous GNAQ/11 oncogenes in UM cells, which are much more dependent on Gαq/11 signaling for cell survival and proliferation than other melanoma cells without GNAQ/11 mutations. Furthermore, the palmitoylation inhibitor, 2-bromopalmitate, also specifically disrupted Gαq/11 downstream signaling by interfering with the MAPK pathway and BCL2 survival pathway in GNAQ/11-mutant UM cells and showed a notable synergistic effect when applied in combination with the BCL2 inhibitor, ABT-199, in vitro. The findings validate that GNAQ/11 palmitoylation plays a critical role in UM and may serve as a promising therapeutic target for GNAQ/11-driven UM.
Humans
;
Mice
;
Animals
;
Lipoylation
;
NIH 3T3 Cells
;
Uveal Neoplasms/genetics*
;
Melanoma/genetics*
;
Cell Proliferation
;
Proto-Oncogene Proteins c-bcl-2
;
GTP-Binding Protein alpha Subunits, Gq-G11/genetics*
2.Biological efficacy of perpendicular type-I collagen protruded from TiO
Chia-Yu CHEN ; David M KIM ; Cliff LEE ; John DA SILVA ; Shigemi NAGAI ; Toshiki NOJIRI ; Masazumi NAGAI
International Journal of Oral Science 2020;12(1):36-36
The aim of this study was to evaluate the biological efficacy of a unique perpendicular protrusion of type-I collagen (Col-I) from TiO
Animals
;
Cell Adhesion
;
Collagen Type I
;
Mice
;
NIH 3T3 Cells
;
Nanotubes
;
Surface Properties
;
Titanium
3.Histological Method to Study the Effect of Shear Stress on Cell Proliferation and Tissue Morphology in a Bioreactor
Morgan CHABANON ; Hervé DUVAL ; Jérôme GRENIER ; Claire BEAUCHESNE ; Benoit GOYEAU ; Bertrand DAVID
Tissue Engineering and Regenerative Medicine 2019;16(3):225-235
BACKGROUND: Tissue engineering represents a promising approach for the production of bone substitutes. The use of perfusion bioreactors for the culture of bone-forming cells on a three-dimensional porous scaffold resolves mass transport limitations and provides mechanical stimuli. Despite the recent and important development of bioreactors for tissue engineering, the underlying mechanisms leading to the production of bone substitutes remain poorly understood. METHODS: In order to study cell proliferation in a perfusion bioreactor, we propose a simplified experimental set-up using an impermeable scaffold model made of 2 mm diameter glass beads on which mechanosensitive cells, NIH-3T3 fibroblasts are cultured for up to 3 weeks under 10 mL/min culture medium flow. A methodology combining histological procedure, image analysis and analytical calculations allows the description and quantification of cell proliferation and tissue production in relation to the mean wall shear stress within the bioreactor. RESULTS: Results show a massive expansion of the cell phase after 3 weeks in bioreactor compared to static control. A scenario of cell proliferation within the three-dimensional bioreactor porosity over the 3 weeks of culture is proposed pointing out the essential role of the contact points between adjacent beads. Calculations indicate that the mean wall shear stress experienced by the cells changes with culture time, from about 50 mPa at the beginning of the experiment to about 100 mPa after 3 weeks. CONCLUSION: We anticipate that our results will help the development and calibration of predictive models, which rely on estimates and morphological description of cell proliferation under shear stress.
Bioreactors
;
Bone Substitutes
;
Calibration
;
Cell Proliferation
;
Fibroblasts
;
Glass
;
Methods
;
NIH 3T3 Cells
;
Perfusion
;
Porosity
;
Tissue Engineering
4.Preliminary Study on the Effect of Adipocytes on the Biological Behaviors of Lung Adenocarcinoma A549 Cells in Tumor Microenvironment.
Hang ZHANG ; Jingjing LI ; Yanan CAO ; Xiang DONG ; Cong GAO ; Fanfan LI
Chinese Journal of Lung Cancer 2018;21(5):351-357
BACKGROUND:
Adipocytes in the tumor microenvironment may provide the metabolic fuel or signal transduction through media and other means to promote a variety of malignant proliferation and invasion, of tumor cells, but their role in lung cancer progression is still unclear. The purpose of this study was to investigate the effect of adipocytes on lung cancer cell biology.
METHODS:
3T3-L1 pre-adipocytes were induced into mature adipocytes. The cell morphology was observed by microscopy and Oil Red O staining. MTT assay, colony formation assay, wound-healing and Transwell methods were used to detect lung cancer cell proliferation, migration and invasion ability. The content of triglyceride in cells was determined by colorimetry.
RESULTS:
The morphology of lung adenocarcinoma A549 cells became more slender after co-culture with mature adipocytes, and the proliferation and cloning ability were significantly enhanced (P<0.05). In addition, mature adipocytes can also promote the migration ability (P<0.05), invasion ability (P<0.01) and accumulation of intracellular lipid (P<0.05) of A549 cells.
CONCLUSIONS
These findings suggested that adipocytes in tumor microenvironment can promote the proliferation, migration and invasion of lung adenocarcinoma A549 cells, which may be related to lipid metabolism.
A549 Cells
;
Adenocarcinoma
;
metabolism
;
pathology
;
physiopathology
;
Adenocarcinoma of Lung
;
Adipocytes
;
cytology
;
metabolism
;
Animals
;
Cell Movement
;
Cell Proliferation
;
Humans
;
Lung Neoplasms
;
metabolism
;
pathology
;
physiopathology
;
Mice
;
NIH 3T3 Cells
;
Triglycerides
;
metabolism
;
Tumor Microenvironment
5.Induction of robust senescence-associated secretory phenotype in mouse NIH-3T3 cells by mitomycin C.
Wei-Xing HUANG ; Xiao-Xuan GUO ; Zhong-Zhi PENG ; Chun-Liang WENG ; Chun-Yan HUANG ; Ben-Yan SHI ; Jie YANG ; Xiao-Xin LIAO ; Xiao-Yi LI ; Hui-Ling ZHENG ; Xin-Guang LIU ; Xue-Rong SUN
Acta Physiologica Sinica 2017;69(1):33-40
Senescence-associated secretory phenotype (SASP) is often a concomitant result of cell senescence, embodied by the enhanced function of secretion. The SASP factors secreted by senescent cells include cytokines, proteases and chemokines, etc, which can exert great influence on local as well as systemic environment and participate in the process of cell senescence, immunoregulation, angiogenesis, cell proliferation and tumor invasion, etc. Relative to the abundance of SASP models in human cells, the in vitro SASP model derived from mouse cells is scarce at present. Therefore, the study aimed to establish a mouse SASP model to facilitate the research in the field. With this objective, we treated the INK4a-deficient mouse NIH-3T3 cells and the wildtype mouse embryonic fibroblasts (MEF) respectively with mitomycin C (MMC), an anticarcinoma drug which could induce DNA damage. The occurring of cell senescence was evaluated by cell morphology, β-gal staining, integration ratio of EdU and Western blot. Quantitative RT-PCR and ELISA were used to detect the expression and secretion of SASP factors, respectively. The results showed that, 8 days after the treatment of NIH-3T3 cells with MMC (1 μg/mL) for 12 h or 24 h, the cells became enlarged and the ratios of β-gal-positive (blue-stained) cells significantly increased, up to 77.4% and 90.4%, respectively. Meanwhile, the expression of P21 protein increased and the integration ratios of EdU significantly decreased (P < 0.01). Quantitative RT-PCR detection showed that the mRNA levels of several SASP genes, including IL-6, TNF-α, IL-1α and IL-1β increased evidently. ELISA detection further observed an enhanced secretion of IL-6 (P < 0.01). On the contrary, although wildtype MEF could also be induced into senescence by MMC treatment for 12 h or 24 h, embodied by the enlarged cell volume, increased ratios of β-gal-positive cells (up to 71.7% and 80.2%, respectively) and enhanced expression of P21 protein, the secretion of IL-6 displayed no significant change. Our study indicated that, although MMC could induce senescence in both mouse NIH-3T3 cells and wildtype MEF, only senescent NIH-3T3 cells displayed the canonical SASP phenomena. Current study suggested that senescent NIH-3T3 cells might be an appropriate in vitro SASP model of mouse cells.
Animals
;
Cell Proliferation
;
Cellular Senescence
;
drug effects
;
Cyclin-Dependent Kinase Inhibitor p21
;
genetics
;
metabolism
;
Cytokines
;
genetics
;
metabolism
;
DNA Damage
;
Fibroblasts
;
drug effects
;
Interleukin-6
;
secretion
;
Mice
;
Mitomycin
;
pharmacology
;
NIH 3T3 Cells
;
Phenotype
6.Differentially Expressed Proteins in Nitric Oxide-Stimulated NIH/3T3 Fibroblasts: Implications for Inhibiting Cancer Development.
Dong Hwi SHIM ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(2):563-571
PURPOSE: Recent evidence shows that nitric oxide (NO) may exhibit both pro-cancer and anti-cancer activities. The present study aimed to determine the differentially expressed proteins in NO-treated NIH/3T3 fibroblasts in order to investigate whether NO induces proteins with pro-cancer or anti-cancer effects. MATERIALS AND METHODS: The cells were treated with 300 microM of an NO donor 3,3-bis-(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18) for 12 h. The changed protein patterns, which were separated by two-dimensional electrophoresis using pH gradients of 4-7, were conclusively identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of the peptide digests. RESULTS: Seventeen differentially expressed proteins were identified in NOC-18-treated cells. Nine proteins [vinculin protein, keratin 19, ubiquitous tropomodulin, F-actin capping protein (alpha1 subunit), tropomyosin 3, 26S proteasome-associated pad1 homolog, T-complex protein 1 (epsilon subunit) N(G)-dimethylarginine dimethylaminohydrolase, and heat shock protein 90] were increased and eight proteins (heat shock protein 70, glucosidase II, lamin B1, calreticulin, nucleophosmin 1, microtubule-associated protein retinitis pigmentosa/end binding family member 1, 150 kD oxygen-regulated protein precursor, and heat shock 70-related protein albino or pale green 2) were decreased by NOC-18 in the cells. Thirteen proteins are related to the suppression of cancer cell proliferation, invasion, and metastasis while two proteins (heat shock protein 90 and N(G)-dimethylarginine dimethylaminohydrolase) are related to carcinogenesis. The functions of 150 kD oxygen-regulated protein precursor and T-complex protein 1 (epsilon subunit) are unknown in relation to carcinogenesis. CONCLUSION: Most proteins differentially expressed by NOC-18 are involved in inhibiting cancer development.
Animals
;
Electrophoresis, Gel, Two-Dimensional/*methods
;
Fibroblasts/*metabolism/pathology
;
HSP70 Heat-Shock Proteins
;
Humans
;
Mice
;
NIH 3T3 Cells
;
Neoplasms/*metabolism/pathology
;
Nitric Oxide Donors
;
Nitroso Compounds
;
Proteins/analysis/*metabolism
;
Proteomics/*methods
;
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
7.Construction and analysis of recombinant eukaryotic expression plasmids for SOX10, the causative gene of Warrdenburg syndrome.
Hua ZHANG ; Juan FENG ; Hongsheng CHEN ; Jiada LI ; Hunjin LUO ; Yong FENG
Chinese Journal of Medical Genetics 2015;32(1):49-55
OBJECTIVETo study the exogenous expression and subcellular localization of wild type (WT) and mutant SOX10 proteins in vitro through generation of expression plasmids in order to reveal the pathogenesis of Waardenburg syndrome (WS).
METHODSThe plasmids pECE-SOX10 and pCMV-Flag were ligated after they were subjected to double enzyme digestion using molecular cloning technique to generate recombinant eukaryotic expression plasmid pCMV-SOX10-Flag, which was as a template to generate expression plasmids for novel mutations G37fs, G38fs and E248fs of the SOX10 gene. The constructs were verified by direct sequencing. NIH3T3 cells were transiently transfected with the expression plasmids of wide type SOX10, G37fs, G38fs and E248fs, respectively. The exogenous expression of WT SOX10 protein and mutant G37fs, G38fs and E248fs proteins were analyzed using Western blot assay, while their subcellular distribution were observed with an immunofluorescence assay.
RESULTSThe DNA sequences of expression plasmids for SOX10 and its mutant G37fs, G38fs and E248f were all correct. Both WT and mutant SOX10 proteins were detected at the expected site. WT SOX10 and E248fs proteins have only localized in the nucleus, whereas G37fs and G38fs proteins showed aberrant localization in both cytoplasm and nucleus.
CONCLUSIONRecombinant eukaryotic expression plasmids for the SOX10 gene and its mutants were successfully constructed. Preliminary analysis showed that the mutations have affected the subcellular distribution of WT SOX10 proteins, which has laid a basis for further study of the molecular mechanism of WS caused by SOX10 gene mutations.
Animals ; Base Sequence ; Humans ; Mice ; Molecular Sequence Data ; Mutation ; NIH 3T3 Cells ; Plasmids ; Recombination, Genetic ; SOXE Transcription Factors ; genetics ; Waardenburg Syndrome ; genetics
8.Analysis of nuclear localization and signal function of MITF protein predisposing to Warrdenburg syndrome.
Hua ZHANG ; Juan FENG ; Hongsheng CHEN ; Jiada LI ; Hunjin LUO ; Yong FENG
Chinese Journal of Medical Genetics 2015;32(6):805-809
OBJECTIVETo study the role of dysfunction of nuclear localization signals (NLS) of MITF protein in the pathogenesis of Waardenburg syndrome.
METHODSEukaryotic expression plasmid pCMV-MITF-Flag was used as a template to generate mutant plasmid pCMV-MITF△NLS-Flag by molecular cloning technique in order to design the mutagenic primers. The UACC903 cells were transfected transiently with MITF and MITF△NLS plasmids, and the luciferase activity assays were performed to determine their impact on the transcriptional activities of target gene tyrosinase (TYR). The oligonucleotide 5'-GAACGAAGAAGAAGATTT-3' was subcloned into pEGFP-N1 to generate recombinant eukaryotic expression plasmid pEGFP-N1-MITF-NLS. The NIH3T3 cells were transfected separately with MITF, MITF△NLS, pEGFP-N1 and pEGFP-N1-NLS plasmids, and their subcellular distribution was observed by immunoflorescence assays.
RESULTSExpression plasmids for the mutant MITF△NLS with loss of core NLS sequence and pEGFP-N1-NLS coupled with MITF△NLS were successfully generated. Compared with the wild-type MITF, MITF△NLS was not able to transactivate the transcriptional activities of promoter TYR and did not affect the normal function of MITF. MITF△NLS was only localized in the cytoplasm and pEGFP-N1 was found in both the cytoplasm and nucleus, whereas pEGFP-N1-NLS was mainly located in the nucleus.
CONCLUSIONThis study has confirmed the localization function of NLS sequence 213ERRRRF218 within the MITF protein. Mutant MITF with loss of NLS has failed to transactivate the transcriptional activities of target gene TYR, which can result in melanocyte defects and cause WS.
Amino Acid Sequence ; Animals ; Cell Line, Tumor ; Genetic Predisposition to Disease ; genetics ; Green Fluorescent Proteins ; genetics ; metabolism ; Humans ; Luciferases ; genetics ; metabolism ; Mice ; Microphthalmia-Associated Transcription Factor ; genetics ; metabolism ; Microscopy, Confocal ; Monophenol Monooxygenase ; genetics ; metabolism ; Mutation ; NIH 3T3 Cells ; Nuclear Localization Signals ; genetics ; Transcriptional Activation ; Transfection ; Waardenburg Syndrome ; diagnosis ; genetics ; metabolism
9.Sumoylation of Hes6 Regulates Protein Degradation and Hes1-Mediated Transcription.
Jiwon LEE ; Sung Kook CHUN ; Gi Hoon SON ; Kyungjin KIM
Endocrinology and Metabolism 2015;30(3):381-388
BACKGROUND: Hes6 is a transcriptional regulator that induces transcriptional activation by binding to transcription repressor Hes1 and suppressing its activity. Hes6 is controlled by the ubiquitin-proteosome-mediated degradation system. Here we investigated the sumoylation of Hes6 and its functional role in its rhythmic expression. METHODS: Hes6, SUMO, and ubiquitin were transfected into HeLa cells and the expression pattern was observed by Western blot and immunoprecipitation. To confirm the effect of sumoylation on the rhythmic expression of Hes6, we generated mouse Hes6 promoter-driven GFP-Hes6 fusion constructs and expressed these constructs in NIH 3T3 cells. RESULTS: Overexpression of SUMO led to sumoylation of Hes6 at both lysine 27 and 30. Protein stability of Hes6 was decreased by sumoylation. Moreover, expression of a Hes6 sumoylation-defective mutant, the 2KR (K27/30R) mutant, or co-expression of SUMO protease SUSP1 with native Hes6, strongly reduced ubiquitination. In addition, sumoylation was associated with both the rhythmic expression and transcriptional regulation of Hes6. Wild type Hes6 showed oscillatory expression with about 2-hour periodicity, whereas the 2KR mutant displayed a longer period. Furthermore, sumoylation of Hes6 derepressed Hes1-induced transcriptional repression. CONCLUSION: Hes6 sumoylation plays an important role in the regulation of its stability and Hes1-mediated transcription. These results suggest that sumoylation may be crucial for rhythmic expression of Hes6 and downstream target genes.
Animals
;
Blotting, Western
;
HeLa Cells
;
Humans
;
Immunoprecipitation
;
Lysine
;
Mice
;
NIH 3T3 Cells
;
Periodicity
;
Protein Stability
;
Proteolysis*
;
Repression, Psychology
;
Sumoylation*
;
Transcriptional Activation
;
Ubiquitin
;
Ubiquitination
10.Effects of Zuogui pill, Yougui pill and relative compositions on differentiation towards germ cells of mouse embryonic stem cell 1B10.
Zou-ying YAO ; Qian WAN ; Hua LU ; Xia LIU
China Journal of Chinese Materia Medica 2015;40(3):495-500
OBJECTIVETo investigate the effects of Zuogui pill, Yougui pill and the relative compositions on the differentiation towards germ cells of stem cells.
METHODThe rat drug sera for Zuogui pill, Yougui pill and the common composition of Zuogui pill and Yougui pill were prepared respectively as the experimental drugs; the mouse embryonic stem cell 1B10 (MESC-1B10) was used as the representative of stem cells; the above rat drug sera were used to intervene MESC-1B10 and the process was traced by microscopy imaging; after 72 h of the intervention, the RNAs were extracted from the different intervened MESC-1B10, cDNAs were synthesized immediately and finally the Real-time quantitative PCR (qPCR) was used to measure the expression patterns of the 10 reproductive-differentiation-related genes for each intervention.
RESULTThe rat drug serum of Zuogui pill (ZGW-RS) significantly up-regulated Oct-4 and SCP3 and significantly down-regulated GDF-9 and Stra8; the rat drug serum of Yougui pill (ZGW-RS) significantly up-regulated Oct-4, GDF-9, Mvh and SCP3 and significantly down-regulated Stra8, Itga6 and Itgb1; the rat drug sera for the common composition of Zuogui pill and Yougui pill (ZGWYGW-RS) significantly up-regulated Oct-4, SCP3 and ZP3 and significantly down-regulated GDF-9, Stra8, Itga6 and Itgb1.
CONCLUSIONZGW-RS can initiate the change towards meiosis, but can not start the reproductive differentiation of MESC-1B10; YGW-RS can initiate the change towards meiosis, and can also start the reproductive differentiation of MESC-1B10 towards female germ cells; ZGWYGW-RS can initiate the change towards meiosis, and can lightly start the reproductive differentiation of MESC-1B10 towards female germ cells but the inductive effect is smaller than YGW-RS. The experimental results, on one hand, strengthen the knowledge about the influence of the relative compositions of Zuogui pill and Yougui pill on the reproductive differentiation of stem cells, on the other hand, help to explain the mechanism of the treatment of the infertility by Zuogui pill and Yougui pill.
Animals ; Cell Differentiation ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Embryonic Stem Cells ; cytology ; drug effects ; Female ; Germ Cells ; cytology ; drug effects ; Infertility ; drug therapy ; Male ; Mice ; NIH 3T3 Cells ; Rats ; Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail