1.Effect of Chaihu Jia Longgu Muli Decoction on apoptosis in rats with heart failure after myocardial infarction through IκBα/NF-κB pathway.
Miao-Yu SONG ; Cui-Ling ZHU ; Yi-Zhuo LI ; Xing-Yuan LI ; Gang LIU ; Xiao-Hui LI ; Yan-Qin SUN ; Ming-Yuan DU ; Lei JIANG ; Chao-Chong YUE
China Journal of Chinese Materia Medica 2025;50(8):2184-2192
This study aims to explore the protective effect of Chaihu Jia Longgu Muli Decoction on rats with heart failure after myocardial infarction, and to clarify its possible mechanisms, providing a new basis for basic research on the mechanism of classic Chinese medicinal formula-mediated inflammatory response in preventing and treating heart failure induced by apoptosis after myocardial infarction. A heart failure model after myocardial infarction was established in rats by coronary artery ligation. The rats were divided into sham group, model group, and low, medium, and high-dose groups of Chaihu Jia Longgu Muli Decoction, with 10 rats in each group. The low-dose, medium-dose, and high-dose groups of Chaihu Jia Longgu Muli Decoction were given 6.3, 12.6, and 25.2 g·kg~(-1) doses by gavage, respectively. The sham group and model group were given an equal volume of distilled water by gavage once daily for four consecutive weeks. Cardiac function was assessed using color Doppler echocardiography. Myocardial pathology was detected by hematoxylin-eosin(HE) staining, apoptosis was measured by TUNEL assay, and mitophagy was observed by transmission electron microscopy. The levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, and N-terminal pro-B-type natriuretic peptide(NT-proBNP) in serum were detected by enzyme-linked immunosorbent assay(ELISA). The expression of apoptosis-related proteins B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), and cleaved caspase-3 was detected by Western blot. Additionally, the expression of phosphorylated nuclear transcription factor-κB(NF-κB) p65(p-NF-κB p65)(upstream) and nuclear factor kappa B inhibitor alpha(IκBα)(downstream) in the NF-κB signaling pathway was assessed by Western blot. The results showed that compared with the sham group, left ventricular ejection fraction(LVEF) and left ventricular short axis shortening(LVFS) in the model group were significantly reduced, while left ventricular end diastolic diameter(LVEDD) and left ventricular end systolic diameter(LVESD) increased significantly. Myocardial tissue damage was severe, with widened intercellular spaces and disorganized cell arrangement. The apoptosis rate was increased, and mitochondria were enlarged with increased vacuoles. Levels of TNF-α, IL-1β, and NT-proBNP were elevated, indicating an obvious inflammatory response. The expression of pro-apoptotic factors Bax and cleaved caspase-3 increased, while the anti-apoptotic factor Bcl-2 decreased. The expression of p-NF-κB p65 was upregulated, and the expression of IκBα was downregulated. In contrast, the Chaihu Jia Longgu Muli Decoction groups showed significantly improved of LVEF, LVFS and decreased LVEDD, LVESD compared to the model group. Myocardial tissue damage was alleviated, and intercellular spaces were reduced. The apoptosis rate decreased, mitochondrial volume decreased, and the levels of TNF-α, IL-1β, and NT-proBNP were lower. The expression of pro-apoptotic factors Bax and cleaved caspase-3 decreased, while the expression of the anti-apoptotic factor Bcl-2 increased. Additionally, the expression of p-NF-κB p65 decreased, while IκBα expression increased. In summary, this experimental study shows that Chaihu Jia Longgu Muli Decoction can reduce the inflammatory response and apoptosis rate in rats with heart failure after myocardial infarction, which may be related to the regulation of the IκBα/NF-κB signaling pathway.
Animals
;
Apoptosis/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Myocardial Infarction/physiopathology*
;
Male
;
NF-kappa B/genetics*
;
Heart Failure/etiology*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
NF-KappaB Inhibitor alpha/genetics*
;
Humans
;
Tumor Necrosis Factor-alpha/genetics*
2.Mechanism of 4-methylcatechol in inhibiting fibroblast-like synoviocyte migration and suppressing inflammatory responses in treatment of rheumatoid arthritis.
Zhendong YING ; Peng WANG ; Lei ZHANG ; Dailing CHEN ; Qiuru WANG ; Qibin LIU ; Tiantian TANG ; Changjun CHEN ; Qingwei MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1051-1060
OBJECTIVE:
To investigate the effects of 4-methylcatechol (4MC) on the migration and inflammatory response in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), as well as its underlying mechanisms of action.
METHODS:
RA-FLS was isolated from synovial tissue donated by RA patients, and the optimal concentration of 4MC was determined by cell counting kit 8 method for subsequent experiments, and the effect of 4MC on the migratory ability of RA-FLS was evaluated via a cell scratch assay. An inflammation model of RA-FLS was induced by tumor necrosis factor α (TNF-α). Real-time fluorescence quantitative PCR and ELISA were employed to detect the gene and protein expression levels of interleukin-1β (IL-1β) and IL-6 in RA-FLS and their culture supernatants, respectively, thereby investigating the anti-inflammatory effects of 4MC. Western blot was used to examine the expressions of nuclear factor κB (NF-κB) signaling pathway-related proteins, including inhibitor of NF-κB-α (IKBα), phosphorylated (P)-IκBα, NF-κB-inducing kinase α (IKKα), P-IKKαβ, P-p65, and p65. Cellular immunofluorescence was utilized to detect the expression and localization of p65 in RA-FLS, exploring whether 4MC exerts its anti-inflammatory effects by regulating the NF-κB signaling pathway. Finally, a collagen-induced arthritis (CIA) mouse model was established. The anti-RA effect of 4MC in vivo was evaluated by gross observation and histological examination.
RESULTS:
4MC inhibited RA-FLS migration in a concentration-dependent manner. In the TNF-α-induced RA-FLS inflammation model, 4MC significantly decreased the gene and protein expression levels of IL-1β and IL-6. Furthermore, 4MC markedly reduced the ratios of P-IΚBα/IΚBα, P-IKKαβ/IKKα, and P-p65/p65, thereby blocking the transcriptional activity of p65 by inhibiting its nuclear translocation. This mechanism effectively suppressed the activation of the TNF-α-mediated NF-κB signaling pathway. Animal studies demonstrated that 4MC [10 mg/(kg·day)] significantly lowered serum levels of IL-1β, IL-6, and TNF-α, and alleviated arthritis severity and bone destruction in CIA mice.
CONCLUSION
4MC not only inhibits the migration of RA-FLS but also mitigates their inflammatory response by suppressing the NF-κB signaling pathway, thereby effectively exerting its anti-RA effects.
Synoviocytes/metabolism*
;
Arthritis, Rheumatoid/metabolism*
;
Animals
;
Cell Movement/drug effects*
;
Humans
;
Catechols/therapeutic use*
;
Fibroblasts/drug effects*
;
Mice
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/cytology*
;
Cells, Cultured
;
Male
;
Arthritis, Experimental
;
Anti-Inflammatory Agents/pharmacology*
;
NF-KappaB Inhibitor alpha
;
Inflammation
3.Role of the nuclear factor-kappa B signaling pathway in the repair of white matter injury in neonatal rats through human umbilical cord mesenchymal stem cell transplantation.
Shu-Juan ZHANG ; Chao WANG ; Qian-Qian XU ; Jun ZHANG ; Yan-Ping ZHU
Chinese Journal of Contemporary Pediatrics 2024;26(12):1352-1361
OBJECTIVES:
To observe the reparative effects of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation on white matter injury (WMI) in neonatal rats and explore its mechanism through the nuclear factor-kappa B (NF-κB) signaling pathway mediated by microglial cells.
METHODS:
Sprague-Dawley rats, aged 2 days, were randomly divided into three groups: sham-operation,WMI, and hUC-MSC (n=18 each). Fourteen days after modeling, hematoxylin-eosin staining was used to observe pathological changes in the white matter, and immunofluorescence staining was used to measure the expression level of ionized calcium-binding adapter molecule 1 (Iba1). Western blotting was used to measure the protein expression levels of inhibitory subunit of nuclear factor-kappa B alpha (IκBα), phosphorylated IκBα (p-IκBα), phosphorylated NF-κB p65 (p-NF-κB p65), myelin basic protein (MBP), and neuron-specific nuclear protein (NeuN). Quantitative real-time PCR was used to assess the mRNA expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), MBP, and NeuN. Immunohistochemistry was used to measure the protein expression levels of MBP and NeuN. On day 28, the Morris water maze test was used to evaluate spatial cognitive ability.
RESULTS:
Fourteen days after modeling, the sham-operation group exhibited intact white matter structure with normal cell morphology and orderly nerve fiber arrangement. In the WMI group, large-scale cell degeneration and necrosis were observed, and nerve fiber arrangement was disordered. The hUC-MSC group showed relatively normal cell morphology and more orderly nerve fibers. Compared with the sham-operation group, the WMI group had significantly higher proportions of Iba1-positive cells, increased protein levels of p-IκBα and p-NF-κB p65, and higher mRNA levels of TNF-α and IL-1β. The protein expression of IκBα and the positive expression of MBP and NeuN, as well as their protein and mRNA levels, were significantly reduced in the WMI group (P<0.05). Compared with the WMI group, the hUC-MSC group showed reduced proportions of Iba1-positive cells, decreased protein levels of p-IκBα and p-NF-κB p65, and lower mRNA levels of TNF-α and IL-1β. Furthermore, IκBα protein expression and MBP and NeuN expression (both at the protein and mRNA levels) were significantly increased in the hUC-MSC group (P<0.05). On day 28, the Morris water maze results showed that compared with the sham-operation group, the WMI group had significantly longer escape latency and fewer platform crossings (P<0.05). In contrast, the hUC-MSC group had significantly shorter escape latency and more platform crossings than the WMI group (P<0.05).
CONCLUSIONS
hUC-MSC transplantation can repair WMI in neonatal rats, promote the maturation of oligodendrocytes, and support neuronal survival, likely by inhibiting activation of the NF-κB signaling pathway mediated by microglial cells.
Animals
;
Rats, Sprague-Dawley
;
White Matter/metabolism*
;
Rats
;
Signal Transduction
;
Mesenchymal Stem Cell Transplantation
;
Humans
;
NF-kappa B/metabolism*
;
Animals, Newborn
;
Umbilical Cord/cytology*
;
Male
;
NF-KappaB Inhibitor alpha/metabolism*
;
I-kappa B Proteins/genetics*
;
Microfilament Proteins/analysis*
;
Calcium-Binding Proteins/metabolism*
;
Female
4.Effects of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination on inflammatory responses in atherosclerotic mice.
Wan-Yu LI ; Qing-Yin LONG ; Xin-Ying FU ; Lu MA ; Wei TAN ; Yan-Ling LI ; Shun-Zhou XU ; Wei ZHANG ; Chang-Qing DENG
China Journal of Chinese Materia Medica 2023;48(15):4164-4172
The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Cholesterol, LDL
;
Hyperplasia
;
Mice, Inbred C57BL
;
Atherosclerosis/genetics*
;
Apolipoproteins E/therapeutic use*
;
RNA, Messenger
5.Protective effect of Liujing Toutong Tablets on rats with permanent cerebral ischemia via NF-κB signaling pathway.
Zi-Han YU ; Ke PEI ; Ting-Ting ZHAO ; Hong-Chang LI ; Qin-Qing LI ; Wen-Jing ZHOU ; Wen-Bin HE ; Jun-Long ZHANG
China Journal of Chinese Materia Medica 2023;48(21):5871-5880
This study investigated the neuroprotective effects and underlying mechanism of Liujing Toutong Tablets(LJTT) on a rat model of permanent middle cerebral artery occlusion(pMCAO). The pMCAO model was established using the suture method. Eighty-four male SPF-grade SD rats were randomly divided into a sham operation group, a model group, a nimodipine group(0.020 g·kg~(-1)), and high-, medium-, and low-dose LJTT groups(2.8, 1.4, and 0.7 g·kg~(-1)). The Longa score, adhesive removal test and laser speckle contrast imaging technique were used to evaluate the degree of neurological functional impairment and changes in local cerebral blood flow. The survival and mortality of rats in each group were recorded daily. After seven days of continuous administration following the model induction, the rats in each group were euthanized, and brain tissue and blood samples were collected for corresponding parameter measurements. Nissl staining was used to examine pathological changes in brain tissue neurons. The levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-1β, vascular endothelial growth factor(VEGF), calcitonin gene-related peptide(CGRP), beta-endorphin(β-EP), and endogenous nitric oxide(NO) in rat serum were measured using specific assay kits. The entropy weight method was used to analyze the weights of various indicators. The protein expression levels of nuclear factor kappa-B(NF-κB), inhibitor kappaB alpha(IκBα), phosphorylated IκBα(p-IκBα), and phosphorylated inhibitor of NF-κB kinase alpha(p-IKKα) in brain tissue were determined using Western blot. Immunohistochemistry was used to detect the protein expression of chemokine-like factor 1(CKLF1) and C-C chemokine receptor 5(CCR5) in rat brain tissue. Compared with the sham operation group, the model group showed significantly higher neurological functional impairment scores, prolonged adhesive removal time, decreased cerebral blood flow, increased neuronal damage, reduced survival rate, significantly increased levels of TNF-α, IL-1β, IL-6, CGRP, and NO in serum, significantly decreased levels of VEGF and β-EP, significantly increased expression levels of NF-κB p65, p-IκBα/IκBα, and p-IKKα in rat brain tissue, and significantly upregulated protein expression of CKLF1 and CCR5. Compared with the model group, the high-dose LJTT group significantly improved the neurological functional score of pMCAO rats after oral administration for 7 days. LJTT at all doses significantly reduced adhesive removal time and restored cerebral blood flow. The high-and medium-dose LJTT groups significantly improved neuronal damage. The LJTT groups at all doses showed reduced levels of TNF-α, IL-1β, IL-6, CGRP, and NO in rat serum, increased VEGF and β-EP levels, and significantly decreased expression levels of NF-κB p65, p-IκBα/IκBα, p-IKKα, and CCR5 protein in rat brain tissue. The entropy weight analysis revealed that CGRP and β-EP were significantly affected during the model induction, and LJTT exhibited a strong effect in reducing the release of inflammatory factors such as TNF-α and IL-1β. LJTT may exert a neuroprotective effect on rats with permanent cerebral ischemia by reducing neuroinflammatory damage, and its mechanism may be related to the inhibition of the NF-κB signaling pathway and the regulation of the CKLF1/CCR5 axis. Additionally, LJTT may exert certain analgesic effects by reducing CGRP and NO levels and increasing β-EP levels.
Rats
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Vascular Endothelial Growth Factor A/genetics*
;
I-kappa B Kinase/pharmacology*
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-6/genetics*
;
Calcitonin Gene-Related Peptide/pharmacology*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Brain Ischemia/drug therapy*
;
Tablets
6.miR-18a ameliorates inflammation and tissue injury in a mouse model of allergic rhinitis via blocking TLR4/NF-κB pathway.
Jun YANG ; Qingyun LI ; Lu WANG ; Hui XIE
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):680-685
Objective To investigate the role of microRNA-18a (miR-18a) in the pathogenesis of allergic rhinitis in mice. Methods Twenty-two BALB/c mice were randomly divided into a blank group, a model group and a miR-18a group. Mice in the model group and the miR-18a group were injected intraperitoneally with obumin (OVA) suspension to prepare allergic rhinitis models, and mice in the miR-18a group were simultaneously given lentiviral vector plasmid for overexpression of miR-18a. Allergy symptoms were evaluated by the behavioral score and HE staining. The plasma levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor α (TNF-α) were measured by ELISA. The distribution of CD45+ cells in nasal mucosa was measured by immunofluorescence histochemistry, and CD45+ cells in nasal lavage fluid were measured by flow cytometry. The mRNA expression levels of IL-1β, IL-6 and TNF-α in nasal mucosa tissues were measured by fluorescence quantitative PCR, and the protein expressions of Toll like receptor 4 (TLR4), nuclear factor κB p65 (NF-κB p65), inhibitor of NF-κB α (IκBα) and phosphorylated IκBα (p-IκBα) in nasal mucosa were measured by Western blot analysis. Results Compared with the blank group, the plasma levels of IL-1β, IL-6, and TNF-α in the model group increased significantly. The number of CD45+ cells in both nasal mucosa tissue and nasal irrigation fluid increased, and the mRNA levels of IL-1β, IL-6 and TNF-α and the protein expression levels of TLR4, NF-κB p65 and p-IκBα in nasal mucosa increased. Compared with the model group, the plasma levels of IL-1β, IL-6 and TNF-α in the miR-18a group decreased significantly. The number of CD45+ cells in both nasal mucosa tissue and nasal lavage fluid decreased, and the mRNA levels of IL-1β, IL-6 and TNF-α and the exprotein expression levels of TLR4, NF-κB p65 and p-IκBα in nasal mucosa decreased. Conclusion miR-18a can inhibit the occurrence and development of allergic rhinitis, and its molecular mechanism is related to the inhibition of TLR4/NF-κB pathway activation.
Animals
;
Mice
;
Disease Models, Animal
;
Inflammation
;
Interleukin-6/genetics*
;
MicroRNAs/genetics*
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha
;
Rhinitis, Allergic
;
RNA, Messenger
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/genetics*
7.IL-33 up-regulates eIF3a expression by activating NF-κB signaling pathway to mediate the proliferation and differentiation of mouse pulmonary myofibroblasts and aggravate pulmonary fibrosis.
Yunxing GAO ; Yu FU ; Xiao CHEN ; Zepeng LI ; Xiaowei HE ; Xianwei LI
Chinese Journal of Cellular and Molecular Immunology 2023;39(8):693-700
Objective To investigate the effects and mechanism of Interleukin-33 (IL-33) mediated proliferation and differentiation of pulmonary myofibroblasts (MFbs) in pulmonary fibrosis (PF). Methods C57BL/6 mice were randomly divided into four groups: a control group, a bleomycin (BLM) group, a BLM combined with IL-33 group and a BLM combined with anti-IL-33 antibody group, 12 mice in each group. The PF model was induced by intratracheal injection of BLM (5000 U/kg). The degrees of fibrosis were examined using HE and Masson staining. ELISA was used to measure the plasma levels of IL-33. Immunohistochemical staining was used to measure the expression of alpha smooth muscle actin (α-SMA) in lung tissue. Primary pulmonary fibroblasts were isolated and cultured from lung tissues of mice. The cells were divided into four groups: a control group, an IL-33 group, an IL-33 combined with dimethyl sulfoxide (DMSO) group and an IL-33 combined with pyrrolidine dithiocarbamate (PDTC) group. The cells were treated with DMSO or PDTC for 1 hour and then with IL-33 for 48 hours. Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) assay and cell cycle was measured by flow cytometry. TranswellTM assay was used to analyze cell migration. Real-time quantitative PCR was used to measure the expression of collagen type I (Col1), Col3 and α-SMA mRNA. The protein levels of IL-33, Col1, Col3, α-SMA, eukaryotic initiation factor 3a (eIF3a), phosphorylated IκBα (p-IκBα) (total lysate), p-NF-κB p65(total lysate) and NF-κB p65 (nucleus) were measured by Western blot analysis. Results In vivo, compared with the control group, the expressions of IL-33, p-IκBα (total lysate), p-NF-κB p65 (total lysate), NF-κB p65(nucleus), eIF3a, α-SMA, Col1 and Col3 in the BLM group significantly increased. Compared with the BLM group, the expressions of p-IκBα (total lysate), p-NF-κB p65 (total lysate), NF-κB p65 (nucleus), eIF3a, α-SMA, Col1 and Col3 in the IL-33 group increased further and the PF was further aggravated. But the effect of anti-IL-33 antibody was just opposite to that of IL-33. In vitro, IL-33 markedly induced the proliferation and migration of pulmonary fibroblasts, and significantly up-regulated the expression of p-IκBα (total lysate), p-NF-κB p65(total lysate), NF-κB p65 (nucleus), eIF3a, α-SMA, Col1 and Col3. But all these effects of IL-33 were reversed by pyrrolidine dithiocarbamate. Conclusion The results suggest that IL-33 may promote the expression of eIF3a by activating NF-κB signaling pathway, thus inducing the proliferation and differentiation of MFbs and promoting the occurrence and development of PF.
Animals
;
Mice
;
Bleomycin/metabolism*
;
Cell Differentiation
;
Cell Proliferation
;
Dimethyl Sulfoxide/pharmacology*
;
Fibroblasts
;
Interleukin-33/pharmacology*
;
Mice, Inbred C57BL
;
Myofibroblasts/metabolism*
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Pulmonary Fibrosis
;
Signal Transduction
8.Chinese medicine Jiangzhuo mixture regulates glucose and lipid metabolism in obese rats through TLR4/I κB α/NF- κB signaling pathway.
Qiong SU ; Danna JIANG ; Zhao ZHONG ; Kai ZHOU ; Wenbo GONG
Journal of Zhejiang University. Medical sciences 2023;52(5):627-635
OBJECTIVES:
To explore the mechanism of Chinese medicine Jiangzhuo mixture regulating glucose and lipid metabolism in obese rats.
METHODS:
Thirty healthy male SD rats were randomly divided into normal control group, model control group, and Jiangzhuo mixture treatment group, with 10 rats in each group. The rats in the normal control group were fed with normal diet, the obesity model was induced by feeding high-fat diet in the model control group and the Jiangzhuo mixture treatment group, the rats in the treatment group were given with Jiangzhuo mixture 50 g/kg by gavage. After 8 weeks of intervention, the blood glucose (GLU), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) levels were measured in the three groups. Quantitative reverse transcription PCR were used to detect the expression levels of PR domain containing 16 (PRDM16) and uncoupling protein 1 (UCP1) in white and brown adipose tissues of the rats in each group; Western blotting was used to detect the expression of PRDM16 in the white and brown adipose tissue of rats, and Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB) and inhibitor of NF-κB alpha (IκBα) in the white adipose tissue; immunohistochemistry was used to detect the expression of UCP1 protein in white and brown adipose tissues.
RESULTS:
Compared with the normal control group, the white fat weight (P<0.01), white fat coefficient (P<0.05) and Lee's coefficient (P<0.01) were significantly increased in the model control group; the contents of GLU, TC, TG and LDL-C were all increased, and the content of TG was significantly increased (P<0.05) in the model control group. The mRNA and protein expression levels of PRDM16 and UCP1 in white fat and brown fat were significantly decreased (P<0.05) in the model control group. Compared with the model control group, the white fat weight and white fat coefficient and Lee's coefficient were significantly reduced in the Jiangzhuo mixture treatment group (all P<0.01), the levels of GLU, TC, TG, and LDL-C in the the treatment group were all reduced, and the content of TG was reduced more obviously (P<0.01); expression levels of PRDM16 and UCP1 mRNA and protein were increased in brown and white adipose tissue. Compared with the normal control group, the expression levels of TLR4, phospho-IκBα and NF-κB-p65 proteins in white adipose tissue of the model control group were significantly increased (all P<0.01), while the expression levels of these proteins in the treatment group were significantly lower than those in the model control group (all P<0.05).
CONCLUSIONS
Jiangzhuo mixture can alleviate high-fat diet-induced increase in body fat, abnormal expression of biochemical indexes and promote the expression of key proteins including UCP1 and PRDM16 in white and brown adipose tissues by regulating TLR4/IκBα/NF-κB signaling pathway.
Rats
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Rats, Sprague-Dawley
;
Glucose
;
Lipid Metabolism
;
Toll-Like Receptor 4
;
Cholesterol, LDL/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Medicine, Chinese Traditional
;
Signal Transduction
;
Triglycerides
;
Transcription Factors/metabolism*
;
Obesity
;
RNA, Messenger
9.Ethyl Lithospermate Reduces Lipopolysaccharide-Induced Inflammation through Inhibiting NF-κB and STAT3 Pathways in RAW 264.7 Cells and Zebrafish.
Chun-Hong ZHOU ; Hua YANG ; Li-Fang ZOU ; Di-Fa LIU ; Lin-Zhong YU ; Hui-Hui CAO ; Li-E DENG ; Zhang-Wei WANG ; Zi-Bin LU ; Jun-Shan LIU
Chinese journal of integrative medicine 2023;29(12):1111-1120
OBJECTIVE:
To explore the anti-inflammatory effects of ethyl lithospermate in lipopolysaccharide (LPS)-stimulated RAW 264.7 murine-derived macrophages and zebrafish, and its underlying mechanisms.
METHODS:
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide (MTT) assays were performed to investigate the toxicity of ethyl lithospermate at different concentrations (12.5-100 µ mol/L) in RAW 264.7 cells. The cells were stimulated with LPS (100 ng/mL) for 12 h to establish an inflammation model in vitro, the production of pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α (TNF-α) were assessed by enzyme linked immunosorbent assay (ELISA). Western blot was used to ascertain the protein expressions of signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) p65, phospho-STAT3 (p-STAT3, Tyr705), inhibitor of NF-κB (IκB) α, and phospho-I κB α (p-IκB α, Ser32), and confocal imaging was used to identify the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705). Additionally, the yolk sacs of zebrafish (3 days post fertilization) were injected with 2 nL LPS (0.5 mg/mL) to induce an inflammation model in vivo. Survival analysis, hematoxylin-eosin (HE) staining, observation of neutrophil migration, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to further study the anti-inflammatory effects of ethyl lithospermate and its probable mechanisms in vivo.
RESULTS:
The non-toxic concentrations of ethyl lithospermate have been found to range from 12.5 to 100 µ mol/L. Ethyl lithospermate inhibited the release of IL-6 and TNF-α(P<0.05 or P<0.01), decreased IκBα degradation and phosphorylation (P<0.05) as well as the nuclear translocation of NF-κB p65 and p-STAT3 (Tyr705) in LPS-induced RAW 264.7 cells (P<0.01). Ethyl lithospermate also decreased inflammatory cells infiltration and neutrophil migration while increasing the survival rate of LPS-stimulated zebrafish (P<0.05 or P<0.01). In addition, ethyl lithospermate also inhibited the mRNA expression levels of of IL-6, TNF-α, IκBα, STAT3, and NF-κB in LPS-stimulated zebrafish (P<0.01).
CONCLUSION
Ethyl lithospermate exerts anti-Inflammatory effected by inhibiting the NF-κB and STAT3 signal pathways in RAW 264.7 macrophages and zebrafish.
Animals
;
Mice
;
NF-kappa B/metabolism*
;
Lipopolysaccharides
;
RAW 264.7 Cells
;
Zebrafish
;
NF-KappaB Inhibitor alpha/metabolism*
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Inflammation/metabolism*
;
Anti-Inflammatory Agents/therapeutic use*
10.Hypoxia promotes lipopolysaccharide-induced CXCL10 expression in microglia.
Zi-Bi SHI ; Yue HU ; Qian-Qian RUAN ; Ming FAN ; Ming ZHAO ; Ling-Ling ZHU
Acta Physiologica Sinica 2023;75(2):153-159
This study was aimed to investigate the effect of hypoxia on lipopolysaccharide (LPS)-induced CXC-chemokine ligand-10 (CXCL10) expression and the underlying mechanism. C57BL/6J mice were randomly divided into control, hypoxia, LPS, and hypoxia combined with LPS groups. The LPS group was intraperitoneally injected with 0.5 mg/kg LPS, and the hypoxia group was placed in a hypobaric hypoxia chamber (simulated altitude of 6 000 m). The serum and hippocampal tissue samples were collected after 6 h of the treatment. The levels of CXCL10 in the serum and hippocampal tissue of mice were detected by ELISA. The microglia cell line BV2 and primary microglia were stimulated with hypoxia (1% O2) and/or LPS (100 ng/mL) for 6 h. The mRNA expression level of CXCL10 and its content in culture supernatant were detected by real-time quantitative PCR and ELISA, respectively. The phosphorylation levels of nuclear factor κB (NF-κB) signaling pathway-related proteins, p65 and IκBα, were detected by Western blot. Moreover, after NF-κB signaling pathway being blocked with a small molecular compound, PDTC, CXCL10 mRNA expression level was detected in the BV2 cells. The results showed that in the LPS-induced mouse inflammatory model, hypoxia treatment could promote LPS-induced up-regulation of CXCL10 in both serum and hippocampus. Compared with the cells treated with LPS alone, the expression of CXCL10 mRNA and the content of CXCL10 in the culture supernatant of BV2 cells treated with hypoxia combined with LPS were significantly increased. The CXCL10 mRNA level of primary microglial cells treated with hypoxia combined with LPS was significantly up-regulated. Compared with the cells treated with hypoxia or LPS alone, the phosphorylation levels of p65 and IκBα in the BV2 cells treated with hypoxia combined with LPS were significantly increased. PDTC blocked the induction of CXCL10 gene expression by LPS in the BV2 cells. These results suggest that hypoxia promotes LPS-induced expression of CXCL10 in both animal and cell models, and NF-κB signaling pathway plays an important role in this process.
Animals
;
Mice
;
Chemokines, CXC/pharmacology*
;
Hypoxia
;
Ligands
;
Lipopolysaccharides/pharmacology*
;
Mice, Inbred C57BL
;
Microglia/metabolism*
;
NF-kappa B/metabolism*
;
NF-KappaB Inhibitor alpha/pharmacology*
;
RNA, Messenger/metabolism*

Result Analysis
Print
Save
E-mail