1.Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis.
Qiu-Ying LI ; Ping LI ; Nang MYINT PHYU SIN HTWE ; Ke-Ke SHANGGUAN ; Yan LIANG
Journal of Zhejiang University. Science. B 2019;20(9):713-727
Production of reactive oxygen species (ROS) is a conserved immune response primarily mediated by NADPH oxidases (NOXs), also known in plants as respiratory burst oxidase homologs (RBOHs). Most microbe-associated molecular patterns (MAMPs) trigger a very fast and transient ROS burst in plants. However, recently, we found that lipopolysaccharides (LPS), a typical bacterial MAMP, triggered a biphasic ROS burst. In this study, we isolated mutants defective in LPS-triggered biphasic ROS burst (delt) in Arabidopsis, and cloned the DELT1 gene that was shown to encode RBOHD. In the delt1-2 allele, the antepenultimate residue, glutamic acid (E919), at the C-terminus of RBOHD was mutated to lysine (K). E919 is a highly conserved residue in NADPH oxidases, and a mutation of the corresponding residue E568 in human NOX2 has been reported to be one of the causes of chronic granulomatous disease. Consistently, we found that residue E919 was indispensable for RBOHD function in the MAMP-induced ROS burst and stomatal closure. It has been suggested that the mutation of this residue in other NADPH oxidases impairs the protein's stability and complex assembly. However, we found that the E919K mutation did not affect RBOHD protein abundance or the ability of protein association, suggesting that the residue E919 in RBOHD might have a regulatory mechanism different from that of other NOXs. Taken together, our results confirm that the antepenultimate residue E is critical for NADPH oxidases and provide a new insight into the regulatory mechanisms of RBOHD.
Agrobacterium tumefaciens/metabolism*
;
Alleles
;
Arabidopsis/metabolism*
;
Arabidopsis Proteins/genetics*
;
Gene Expression Regulation, Plant
;
Genetic Techniques
;
Humans
;
Lipopolysaccharides/metabolism*
;
Luminescence
;
Mutation
;
NADPH Oxidase 2/chemistry*
;
NADPH Oxidases/genetics*
;
Plant Stomata/metabolism*
;
Protein Domains
;
Reactive Oxygen Species/metabolism*
;
Nicotiana/metabolism*
2.Diphenyleneiodonium Inhibits Apoptotic Cell Death of Gastric Epithelial Cells Infected with Helicobacter pylori in a Korean Isolate.
Soon Ok CHO ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(4):1150-1154
NADPH oxidase produces a large amount of reactive oxygen species (ROS) in Helicobacter pylori (H. pylori)-induced gastric epithelial cells. Even though ROS mediate apoptotic cell death, direct involvement of NADPH oxidase on H. pylori-induced apoptosis remains unclear. Besides, H. pylori isolates show a high degree of genetic variability. The predominant genotype of H. pylori in Korea has been reported as cagA+, vacA s1b, m2, iceA genotype. Present study aims to investigate whether NADPH oxidase-generated ROS mediate apoptosis in human gastric epithelial AGS cells infected with H. pylori in a Korean isolate. AGS cells were pretreated with or without an NADPH oxidase inhibitor diphenyleneiodonium (DPI) and cultured in the presence of H. pylori at a bacterium/cell ratio of 300:1. Cell viability, hydrogen peroxide level, DNA fragmentation, and protein levels of p53, Bcl-2, and Bax were determined. Results showed that H. pylori inhibited cell viability with the density of H. pylori added to the cells. Inhibition of NADPH oxidase by DPI suppressed H. pylori-induced cell death, increased hydrogen peroxide, DNA fragmentation, and the ratio of Bax/Bcl-2, and p53 induction in AGS cells dose-dependently. The results suggest that targeting NADPH oxidase may prevent the development of gastric inflammation associated with H. pylori infection by suppressing abnormal apoptotic cell death of gastric epithelial cells.
Apoptosis
;
Apoptosis Regulatory Proteins/metabolism
;
Cell Survival
;
Epithelial Cells/metabolism/microbiology
;
Gastric Mucosa/metabolism
;
Helicobacter Infections/*metabolism/microbiology
;
Helicobacter pylori/drug effects/genetics/*isolation & purification
;
Humans
;
NADPH Oxidase/metabolism
;
Onium Compounds/*antagonists & inhibitors/pharmacology
;
Oxidative Stress/drug effects
;
Reactive Oxygen Species/metabolism
;
Republic of Korea
;
Stomach/cytology/*metabolism/microbiology
3.CYP2C8-derived epoxyeicosatrienoic acids decrease oxidative stress-induced endothelial apoptosis in development of atherosclerosis: Role of Nrf2 activation.
Wan-jun LIU ; Tao WANG ; Bei WANG ; Xin-tian LIU ; Xing-wei HE ; Yu-jian LIU ; Zhu-xi LI ; Rong TAN ; He-song ZENG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):640-645
The aim of the present study is to investigate how cytochrome P450 enzymes (CYP) 2C8-derived epoxyeicosatrienoic acids (EETs) regulate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and protect against oxidative stress-induced endothelial injuries in the development and progression of atherosclerosis. In this study, cultured human umbilical vein endothelial cells (HUVECs) were transfected with CYP2C8 or pretreated with exogenous EETs (1 μmol/L) before TNF-α (20 ng/mL) stimulation. Apoptosis and intracellular ROS production were determined by flow cytometry. The expression levels of ROS-associated NAD(P)H subunits gp91 and p47, the anti-oxidative enzyme catalase (CAT), Nrf2, heme oxygenase-1 (HO-1) and endothelial nitric oxide synthase (eNOS) were detected by Western blotting. The results showed that CYP2C8-derived EETs decreased apoptosis of HUVECs treated with TNF-α. Pretreatment with 11, 12-EET also significantly blocked TNF-α-induced ROS production. In addition, 11, 12-EET decreased oxidative stress-induced apoptosis. Furthermore, the ability of 11, 12-EET to protect cells against TNF-α-induced apoptosis via oxidative stress was abrogated by transient transfection with Nrf2-specific small interfering RNA (siRNA). In conclusion, CYP2C8-derived EETs prevented TNF-α-induced HUVECs apoptosis via inhibition of oxidative stress associated with the Nrf2 signaling.
8,11,14-Eicosatrienoic Acid
;
analogs & derivatives
;
metabolism
;
pharmacology
;
Adaptor Proteins, Signal Transducing
;
genetics
;
metabolism
;
Apoptosis
;
drug effects
;
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Atherosclerosis
;
genetics
;
metabolism
;
pathology
;
Catalase
;
genetics
;
metabolism
;
Cytochrome P-450 CYP2C8
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Heme Oxygenase-1
;
genetics
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Membrane Glycoproteins
;
genetics
;
metabolism
;
Models, Biological
;
NADPH Oxidase 2
;
NADPH Oxidases
;
genetics
;
metabolism
;
NF-E2-Related Factor 2
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Reactive Oxygen Species
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
Tumor Necrosis Factor-alpha
;
metabolism
;
pharmacology
4.Panax notoginseng saponins inhibits atherosclerotic plaque angiogenesis by down-regulating vascular endothelial growth factor and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 expression.
Yun QIAO ; Peng-Ju ZHANG ; Xiao-ting LU ; Wei-wei SUN ; Gui-lin LIU ; Min REN ; Lei YAN ; Ji-dong ZHANG
Chinese journal of integrative medicine 2015;21(4):259-265
OBJECTIVETo investigate the mechanism of Panax notoginseng saponins (PNS), an effective component extracted from Panax notoginseng, on atherosclerotic plaque angiogenesis in atherosclerosis-prone apolipoprotein E-knockout (ApoE-KO) mice fed with high-fat, high-cholesterol diet.
METHODSTwenty ApoE-KO mice were divided into two groups, the model group and the PNS group. Ten normal C57BL/6J mice were used as a control group. PNS (60 mg/kg) was orally administered daily for 12 weeks in the PNS group. The ratio of plaque area to vessel area was examined by histological staining. The tissue sample of aortic root was used to detect the CD34 and vascular endothelial growth factor (VEGF) expression areas by immunohistochemistry. The expression of VEGF and nicotinamide adenine dinucleotide phosphate oxidase subunit 4 (NOX4) were measured by reverse transcription polymerase chain reaction and Western blotting respectively.
RESULTSAfter treatment with PNS, the plaque areas were decreased (P<0.05). CD34 expressing areas and VEGF expression areas in plaques were significantly decreased (P<0.05). Meanwhile, VEGF and NOX4 mRNA expression were decreased after treatment with PNS. VEGF and NOX4 protein expression were also decreased by about 72% and 63%, respectively (P<0.01).
CONCLUSIONPNS, which decreases VEGF and NOX4 expression, could alleviate plaque angiogenesis and attenuate atherosclerosis.
Animals ; Down-Regulation ; drug effects ; genetics ; Drugs, Chinese Herbal ; pharmacology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; NADPH Oxidase 4 ; NADPH Oxidases ; genetics ; metabolism ; Neovascularization, Pathologic ; pathology ; prevention & control ; Panax notoginseng ; chemistry ; Plaque, Atherosclerotic ; pathology ; prevention & control ; Saponins ; pharmacology ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
5.Effect of sesamin on pulmonary vascular remodeling in rats with monocrotaline-induced pulmonary hypertension.
Xian-wei LI ; Yun-xing GAO ; Shu LI ; Jie-ren YANG
China Journal of Chinese Materia Medica 2015;40(7):1355-1361
OBJECTIVETo observe the effect of sesamin (Ses) on pulmonary vascular remodeling in rats with monocrotaline ( MCT)-induced pulmonary hypertension (PH).
METHODTotally 48 male Sprague-Dawley (SD) rats were fed adaptively for one week and then divided into the normal control group, the MCT group, the MCT +Ses (50 mg x kg(-1)) group and the MCT + Ses (100 mg x kg(-1)) group, with 12 rats in each group. The PH rat model was induced through the subcutaneous injection with MCT(60 mg x kg(-1)). After the administration for four weeks, efforts were made to measure the right ventricular systolic pressure( RVSP) and mean pulmonary artery pressure (mPAP) through right jugular vein catheterization, and isolate right ventricle( RV) and left ventricle( LV) +septum (S) and measure their length to calculate RV/ ( LV + S) and ratio of RV to tibial length. Pathologic changes in arterioles were observed by HE staining. Masson's trichrome stain was used to demonstrate changes in collagen deposition of arterioles. The alpha-smooth muscle actin (alpha-SMA) expression in pulmonary arteries was measured by immunohistochemisty. The total antioxidative capacity (T-AOC) and malondialdehyde (MDA) content in pulmonary arteries were determined by the colorimetric method. The protein expressions of collagen I, NOX2 and NOX4 were analyzed by Real-time PCR and Western blot.
RESULTAfter the administration for 4 weeks, Ses could attenuate RVSP and mPAP induced by MCT, RV/ (LV + S) and ratio of RV to Tibial length, alpha-SMA and collagen I expressions and remodeling of pulmonary vessels and right ventricle. Meanwhile, Ses could obviously inhibit the expressions of NOX2, NOX4 and MDA content and increase T-AOC.
CONCLUSIONSesamin could ameliorate pulmonary vascular remodeling induced by monocrotaline in PH rats. Its mechanism may be related to expressions of NOX2 and NOX4 expression and reduction in oxidative stress injury.
Animals ; Dioxoles ; administration & dosage ; Disease Models, Animal ; Drugs, Chinese Herbal ; administration & dosage ; Humans ; Hypertension, Pulmonary ; drug therapy ; enzymology ; genetics ; physiopathology ; Lignans ; administration & dosage ; Lung ; blood supply ; enzymology ; metabolism ; Male ; Membrane Glycoproteins ; genetics ; metabolism ; Monocrotaline ; adverse effects ; NADPH Oxidase 2 ; NADPH Oxidase 4 ; NADPH Oxidases ; genetics ; metabolism ; Pulmonary Artery ; drug effects ; metabolism ; physiopathology ; Rats ; Rats, Sprague-Dawley ; Vascular Remodeling ; drug effects
6.Effect of Bilirubin on Triglyceride Synthesis in Streptozotocin-Induced Diabetic Nephropathy.
Jianwei XU ; Eun Seong LEE ; Seon Ha BAEK ; Shin Young AHN ; Sejoong KIM ; Ki Young NA ; Dong Wan CHAE ; Ho Jun CHIN
Journal of Korean Medical Science 2014;29(Suppl 2):S155-S163
We aimed to elucidate the effect of bilirubin on dyslipidemia and nephropathy in a diabetes mellitus (DM) type I animal model. Sprague-Dawley rats were separated into control, DM, and bilirubin-treated DM (Bil) groups. The Bil group was injected intraperitoneally with 60 mg/kg bilirubin 3 times per week and hepatoma cells were cultured with bilirubin at a concentration of 0.3 mg/dL. The Bil group showed lower serum creatinine levels 5 weeks after diabetes onset. Bilirubin treatment also decreased the amount of mesangial matrix, lowered the expression of renal collagen IV and transforming growth factor (TGF)-beta1, and reduced the level of apoptosis in the kidney, compared to the DM group. These changes were accompanied by decreased tissue levels of hydrogen superoxide and NADPH oxidase subunit proteins. Bilirubin decreased serum total cholesterol, high-density lipoprotein cholesterol (HDL-C), free fatty acids, and triglycerides (TGs), as well as the TG content in the liver tissues. Bilirubin suppressed protein expression of LXRalpha, SREBP-1, SCD-1, and FAS, factors involved in TG synthesis that were elevated in the livers of DM rats and hepatoma cells under high-glucose conditions. In conclusion, bilirubin attenuates renal dysfunction and dyslipidemia in diabetes by suppressing LXRalpha and SREBP-1 expression and oxidative stress.
Animals
;
Bilirubin/pharmacology/*therapeutic use
;
Cell Line, Tumor
;
Creatine/blood
;
Diabetes Mellitus, Experimental/chemically induced/complications/*pathology
;
Diabetic Nephropathies/*drug therapy/etiology
;
Disease Models, Animal
;
Kidney/pathology
;
Lipoproteins, HDL/blood
;
Liver/metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NADPH Oxidase/metabolism
;
Orphan Nuclear Receptors/antagonists & inhibitors/genetics/metabolism
;
Oxidative Stress/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism
;
Streptozocin/toxicity
;
Triglycerides/analysis/*biosynthesis/blood
7.Bilirubin Activates Transcription of HIF-1alpha in Human Proximal Tubular Cells Cultured in the Physiologic Oxygen Content.
Sung Gyun KIM ; Shin Young AHN ; Eun Seong LEE ; Sejoong KIM ; Ki Young NA ; Dong Wan CHAE ; Ho Jun CHIN
Journal of Korean Medical Science 2014;29(Suppl 2):S146-S154
The expression of hypoxia-inducible factor (HIF) is influenced by reactive oxygen species (ROS). Effect of bilirubin on HIF-1 expression in proximal tubular cells was investigated under physiological oxygen concentration, which is relative hypoxic condition mimicking oxygen content in the medulla of renal tissue. The human kidney (HK2) cells were cultured in 5% oxygen with or without bilirubin. HIF-1alpha protein expression was increased by bilirubin treatment at 0.01-0.2 mg/dL concentration. The messenger RNA expression of HIF-1alpha was increased by 1.69+/-0.05 folds in the cells cultured with 0.1 mg/dL bilirubin, compared to the control cells. The inhibitors of PI3K/mTOR, PI3K/AKT, and ERK 1/2 pathways did not attenuate increased HIF-1alpha expression by bilirubin. HIF-1alpha expression decreased by 10 microM exogenous hydrogen peroxide (H2O2); scavenger of ROS with or without bilirubin in the HK2 cells increased HIF-1alpha concentration more than that in the cells without bilirubin. Exogenous H2O2 decreased the phosphorylation of P70S6 kinase, which was completely reversed by bilirubin treatment. Knockdown of NOX4 gene by small interfering RNA (siRNA) increased HIF-1alpha mRNA expression. In coonclusion, bilirubin enhances HIF-1alpha transcription as well as the up-regulation of HIF-1alpha protein translation through the attenuation of ROS and subunits of NADPH oxidase.
Bilirubin/*pharmacology
;
Cell Line
;
Epithelial Cells/cytology/metabolism
;
Humans
;
Hydrogen Peroxide/toxicity
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/*metabolism
;
Kidney Tubules, Proximal/cytology
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
NADPH Oxidase/antagonists & inhibitors/genetics/metabolism
;
Oxygen/*pharmacology
;
Phosphatidylinositol 3-Kinases/metabolism
;
Phosphorylation/drug effects
;
Proto-Oncogene Proteins c-akt/metabolism
;
RNA Interference
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism
;
Signal Transduction/drug effects
;
TOR Serine-Threonine Kinases/metabolism
;
Transcriptional Activation/*drug effects
;
Up-Regulation/drug effects
8.Catalpol protect diabetic vascular endothelial function by inhibiting NADPH oxidase.
China Journal of Chinese Materia Medica 2014;39(15):2936-2941
The aim of the present study was to evaluate the protective effect of catalpol on vascular endothelial function in STZ-induced type 2 diabetes mellitus (T2DM) rats. 40 high-fat diet with STZ-induced diabetes rats were randomly divided into model group, catalpol low-dose, middle-dose and high-dose group (10, 50, 100 mg x kg(-1) x d(-1)), 10 normal Wistar rats were used as the normal group. The normal and model groups were given an equivalent amount of saline. All reagents were administered by oral gavage for 6 weeks. After 6 weeks, blood glucose and lipids were detected by an automatic biochemical analyzer. The endothelium-dependent vasodilation response of thoracic aortar was detected. The pathological changes of the thoracic aorta were observed by HE staining. Ser- um nitric oxide (NO), 8-iso prostaglandin F2α (8-iso-PGF2α) and superoxide dismutase (SOD) were detected by ELISA. Reactive oxygen species (ROS) level of thoracic aorta was detected by fluorescence method. The expression of Nox4 and p22phox mRNA and protein in aortic tissue were detected by RT-PCR and Western-blot respectively. After catalpol treatment, endothelial damage of thoracic aorta was attenuated significantly; ROS level of thoracic aorta and serum level of 8-iso-PGF2α were decreased significantly; serum NO and SOD levels were remarkably elevated; expression of Nox4, p22phox mRNA and protein in thoracic aorta were significantly reduced (P < 0.05). Therefore, catalpol has protective effect on endothelial of T2DM, its mechanism may be associated with the down-regulation of Nox4 and p22phox expression, inhibiting oxidative stress reaction response.
Animals
;
Blood Glucose
;
metabolism
;
Diabetes Mellitus, Experimental
;
pathology
;
Diabetes Mellitus, Type 2
;
pathology
;
Dinoprost
;
analogs & derivatives
;
metabolism
;
Endothelium, Vascular
;
drug effects
;
metabolism
;
pathology
;
Enzyme Inhibitors
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Iridoid Glucosides
;
pharmacology
;
Male
;
NADPH Oxidase 4
;
NADPH Oxidases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Nitric Oxide
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Wistar
;
Reactive Oxygen Species
;
metabolism
;
Superoxide Dismutase
;
metabolism
9.Rapid Determination of Chimerism Status Using Dihydrorhodamine Assay in a Patient with X-linked Chronic Granulomatous Disease Following Hematopoietic Stem Cell Transplantation.
Hyun Young KIM ; Hee Jin KIM ; Chang Seok KI ; Dae Won KIM ; Keon Hee YOO ; Eun Suk KANG
Annals of Laboratory Medicine 2013;33(4):288-292
Chronic granulomatous disease (CGD) is a rare genetic disease, which is caused by defects in the NADPH oxidase complex (gp91phox, p22phox, p40phox, p47phox, and p67phox) of phagocytes. This defect results in impaired production of superoxide anions and other reactive oxygen species (ROS), which are necessary for killing bacterial and fungal microorganisms and leads to recurrent, life-threatening bacterial and fungal infections and granulomatous inflammation. The dihydrorhodamine (DHR) flow cytometry assay is a useful diagnostic tool for CGD that can detect absent or reduced NADPH oxidase activity in stimulated phagocytes. We report a patient with X-linked CGD carrying a novel mutation of the CYBB gene whose chimerism status following hematopoietic stem cell transplantation (HSCT) has been rapidly determined using the DHR assay. The level of DHR activity correlates well with short tandem repeat PCR analysis. Considering the advantages of this simple, rapid, and cost-effective procedure, serial measurement of DHR assay would facilitate the rapid determination of a patient's engraftment status, as a supplementary monitoring tool of chimerism status following HSCT.
Base Sequence
;
*Chimerism
;
DNA Mutational Analysis
;
Flow Cytometry
;
Granulomatous Disease, Chronic/*diagnosis/*enzymology/genetics/surgery
;
*Hematopoietic Stem Cell Transplantation
;
Homozygote
;
Humans
;
Infant, Newborn
;
Male
;
Membrane Glycoproteins/chemistry/*genetics
;
Mutation
;
NADPH Oxidase/chemistry/*genetics
;
Polymerase Chain Reaction
;
Rhodamines/chemistry/metabolism
10.Screening of differential proteins binding to Nox1 promoter in A549 cell model of inflammation and oxidative stress.
Xian QIU ; Shuiwang HU ; Jun XU ; Li LI ; Wenjie HUANG
Journal of Southern Medical University 2013;33(5):703-707
OBJECTIVETo screen the regulatory proteins involved in Nox1 promoter activation in a cell model of inflammation and oxidative stress.
METHODSA cell model of inflammation and oxidative stress was established by stimulating A549 cells with tumor necrosis factor-α (TNF-α). The differential proteins binding to Nox1 promoter were screened by DNA pull-down and the binding proteins were separated by 2D electrophoresis and selected according to the their differential expression levels (with over 1.5-fold changes relative to the control level). The screened proteins were finally identified by MALDI-TOF/TOF-MS.
RESULTSSeven differentially expressed protein spots (all upregulated in the cell model) were obtained, among which GLE1, DDX19A, KRT1 and KRT10 were identified by mass spectrometry.
CONCLUSIONGLE1, DDX19A, KRT1 and KRT10 participate in the activation of Nox1 promoter in TNF-α-induced A549 cells, and this result provides new insights into the biological roles of the regulatory proteins of Nox1 promoter in inflammation and oxidative stress.
Cell Line, Tumor ; DEAD-box RNA Helicases ; metabolism ; Electrophoresis, Gel, Two-Dimensional ; Humans ; Inflammation ; Keratin-1 ; metabolism ; Keratin-10 ; metabolism ; Mass Spectrometry ; NADPH Oxidase 1 ; NADPH Oxidases ; genetics ; metabolism ; Nucleocytoplasmic Transport Proteins ; metabolism ; Oxidative Stress ; Promoter Regions, Genetic ; Tumor Necrosis Factor-alpha ; adverse effects

Result Analysis
Print
Save
E-mail