1.Effect of Ambrisentan Therapy on the Expression of Endothelin Receptor, Endothelial Nitric Oxide Synthase and NADPH Oxidase 4 in Monocrotaline-induced Pulmonary Arterial Hypertension Rat Model
Hyeryon LEE ; Arim YEOM ; Kwan Chang KIM ; Young Mi HONG
Korean Circulation Journal 2019;49(9):866-876
BACKGROUND AND OBJECTIVES: Elevated endothelin (ET)-1 level is strongly correlated with the pathogenesis of pulmonary arterial hypertension (PAH). Expression level of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 4 is increased in the PAH patients. Ambrisentan, a selective endothelin receptor A (ERA) antagonist, is widely used in PAH therapy. The current study was undertaken to evaluate the effects of ambrisentan treatment in the monocrotaline (MCT)-induced PAH rat model. METHODS: Rats were categorized into control group (C), monocrotaline group (M) and ambrisentan group (Am). The M and Am were subcutaneously injected 60 mg/kg MCT at day 0, and in Am, ambrisentan was orally administered the day after MCT injection for 4 weeks. The right ventricle (RV) pressure was measured and pathological changes of the lung tissues were observed by Victoria blue staining. Protein expressions of ET-1, ERA, endothelial nitric oxide synthase (eNOS) and NOX4 were confirmed by western blot analysis. RESULTS: Ambrisentan treatment resulted in a recovery of the body weight and RV/left ventricle+septum at week 4. The RV pressure was lowered at weeks 2 and 4 after ambrisentan administration. Medial wall thickening of pulmonary arterioles and the number of intra-acinar arteries were also attenuated by ambrisentan at week 4. Protein expression levels of ET-1 and eNOS were recovered at weeks 2 and 4, and ERA levels recovered at week 4. CONCLUSIONS: Ambrisentan administration resulted in the recovery of ET-1, ERA and eNOS protein expression levels in the PAH model. However, the expression level of NOX4 remained unaffected after ambrisentan treatment.
Animals
;
Arteries
;
Arterioles
;
Blotting, Western
;
Body Weight
;
Endothelin Receptor Antagonists
;
Endothelins
;
Gene Expression
;
Heart Ventricles
;
Humans
;
Hypertension
;
Hypertension, Pulmonary
;
Lung
;
Models, Animal
;
Monocrotaline
;
NADP
;
NADPH Oxidase
;
Nitric Oxide Synthase Type III
;
Oxidoreductases
;
Rats
;
Receptors, Endothelin
;
Victoria
2.Role of NADPH oxidase in oxidative stress injury of human dermal fibroblasts.
Ying CHEN ; Hao HUANG ; Hong-Feng TANG ; Xiu-Fen ZHENG ; Yong HU ; Rui-Hua WANG
Journal of Southern Medical University 2016;36(3):391-395
OBJECTIVETo investigate the role of NADPH oxidase (Nox) in the oxidative stress injury of human dermal fibroblasts (HFbs).
METHODSAn oxidative stress injury model was established in HFbs by exposure to H(2)O(2). Normal HFbs and HFbs exposed to H(2)O(2) with and without pretreatment with NADPH oxidase inhibitor were tested for cell viability using MTT assay, and the intracellular reactive oxygen species (ROS) were determined with a DCFH-DA fluorescent probe. Western blotting was used to measure the protein expressions of membrane-bound subunit gp91phox of NADPH oxidase in the cells.
RESULTH(2)O(2) time- and concentration-dependently induced oxidative stress injury in the fibroblasts, causing a reduction of the cell viability to 40% after a 24-h exposure at 700 µmol/L (P<0.05) and an increase of ROS by 2 folds after a 2-h exposure at 700 µmol/L (P<0.05). Compared with the cells with oxidative stress injury, the cells with NADPH oxidase inhibitor pretreatment showed a 20% higher cell viability (P<0.05) and normal ROS level (P<0.05) following H(2)O(2) exposure. Western blotting demonstrated increased expression of gp91phox in the cells exposed to increasing H(2)O(2) concentrations, but gp91phox expression remained normal in cells pretreated with NADPH oxidase inhibitor.
CONCLUSIONH(2)O(2) can induce oxidative stress injury in the fibroblasts by affecting NADPH oxidase, especially its membrane-bound subunit gp91phox.
Cell Survival ; Cells, Cultured ; Fibroblasts ; cytology ; enzymology ; Humans ; Hydrogen Peroxide ; Membrane Glycoproteins ; metabolism ; NADPH Oxidase 2 ; NADPH Oxidases ; antagonists & inhibitors ; metabolism ; Oxidation-Reduction ; Oxidative Stress ; Reactive Oxygen Species ; metabolism
3.Diphenyleneiodonium Inhibits Apoptotic Cell Death of Gastric Epithelial Cells Infected with Helicobacter pylori in a Korean Isolate.
Soon Ok CHO ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(4):1150-1154
NADPH oxidase produces a large amount of reactive oxygen species (ROS) in Helicobacter pylori (H. pylori)-induced gastric epithelial cells. Even though ROS mediate apoptotic cell death, direct involvement of NADPH oxidase on H. pylori-induced apoptosis remains unclear. Besides, H. pylori isolates show a high degree of genetic variability. The predominant genotype of H. pylori in Korea has been reported as cagA+, vacA s1b, m2, iceA genotype. Present study aims to investigate whether NADPH oxidase-generated ROS mediate apoptosis in human gastric epithelial AGS cells infected with H. pylori in a Korean isolate. AGS cells were pretreated with or without an NADPH oxidase inhibitor diphenyleneiodonium (DPI) and cultured in the presence of H. pylori at a bacterium/cell ratio of 300:1. Cell viability, hydrogen peroxide level, DNA fragmentation, and protein levels of p53, Bcl-2, and Bax were determined. Results showed that H. pylori inhibited cell viability with the density of H. pylori added to the cells. Inhibition of NADPH oxidase by DPI suppressed H. pylori-induced cell death, increased hydrogen peroxide, DNA fragmentation, and the ratio of Bax/Bcl-2, and p53 induction in AGS cells dose-dependently. The results suggest that targeting NADPH oxidase may prevent the development of gastric inflammation associated with H. pylori infection by suppressing abnormal apoptotic cell death of gastric epithelial cells.
Apoptosis
;
Apoptosis Regulatory Proteins/metabolism
;
Cell Survival
;
Epithelial Cells/metabolism/microbiology
;
Gastric Mucosa/metabolism
;
Helicobacter Infections/*metabolism/microbiology
;
Helicobacter pylori/drug effects/genetics/*isolation & purification
;
Humans
;
NADPH Oxidase/metabolism
;
Onium Compounds/*antagonists & inhibitors/pharmacology
;
Oxidative Stress/drug effects
;
Reactive Oxygen Species/metabolism
;
Republic of Korea
;
Stomach/cytology/*metabolism/microbiology
4.CYP2C8-derived epoxyeicosatrienoic acids decrease oxidative stress-induced endothelial apoptosis in development of atherosclerosis: Role of Nrf2 activation.
Wan-jun LIU ; Tao WANG ; Bei WANG ; Xin-tian LIU ; Xing-wei HE ; Yu-jian LIU ; Zhu-xi LI ; Rong TAN ; He-song ZENG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):640-645
The aim of the present study is to investigate how cytochrome P450 enzymes (CYP) 2C8-derived epoxyeicosatrienoic acids (EETs) regulate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and protect against oxidative stress-induced endothelial injuries in the development and progression of atherosclerosis. In this study, cultured human umbilical vein endothelial cells (HUVECs) were transfected with CYP2C8 or pretreated with exogenous EETs (1 μmol/L) before TNF-α (20 ng/mL) stimulation. Apoptosis and intracellular ROS production were determined by flow cytometry. The expression levels of ROS-associated NAD(P)H subunits gp91 and p47, the anti-oxidative enzyme catalase (CAT), Nrf2, heme oxygenase-1 (HO-1) and endothelial nitric oxide synthase (eNOS) were detected by Western blotting. The results showed that CYP2C8-derived EETs decreased apoptosis of HUVECs treated with TNF-α. Pretreatment with 11, 12-EET also significantly blocked TNF-α-induced ROS production. In addition, 11, 12-EET decreased oxidative stress-induced apoptosis. Furthermore, the ability of 11, 12-EET to protect cells against TNF-α-induced apoptosis via oxidative stress was abrogated by transient transfection with Nrf2-specific small interfering RNA (siRNA). In conclusion, CYP2C8-derived EETs prevented TNF-α-induced HUVECs apoptosis via inhibition of oxidative stress associated with the Nrf2 signaling.
8,11,14-Eicosatrienoic Acid
;
analogs & derivatives
;
metabolism
;
pharmacology
;
Adaptor Proteins, Signal Transducing
;
genetics
;
metabolism
;
Apoptosis
;
drug effects
;
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Atherosclerosis
;
genetics
;
metabolism
;
pathology
;
Catalase
;
genetics
;
metabolism
;
Cytochrome P-450 CYP2C8
;
genetics
;
metabolism
;
Gene Expression Regulation
;
Heme Oxygenase-1
;
genetics
;
metabolism
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Membrane Glycoproteins
;
genetics
;
metabolism
;
Models, Biological
;
NADPH Oxidase 2
;
NADPH Oxidases
;
genetics
;
metabolism
;
NF-E2-Related Factor 2
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Reactive Oxygen Species
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
Tumor Necrosis Factor-alpha
;
metabolism
;
pharmacology
5.NADPH Oxidase Accounts for Changes in Cerebrovascular Redox Status in Hindlimb Unweighting Rats.
Liang PENG ; Hai Hong RAN ; Ying ZHANG ; Yu ZHAO ; Yong Yan FAN ; Li PENG ; Ran ZHANG ; Feng CAO
Biomedical and Environmental Sciences 2015;28(11):799-807
OBJECTIVEThe roles of cerebrovascular oxidative stress in vascular functional remodeling have been described in hindlimb-unweighting (HU) rats. However, the underlying mechanism remains to be established.
METHODSWe investigated the generation of vascular reactive oxygen species (ROS), Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and manganese superoxide dismutase (MnSOD) and glutathione peroxidase-1 (GPx-1) mRNA levels in cerebral and mesenteric smooth muscle cells (VSMCs) of HU rats.
RESULTSROS production increased in cerebral but not in mesenteric VSMCs of HU rats compared with those in control rats. Nox2 and Nox4 protein and mRNA levels were increased significantly but MnSOD/GPx-1 mRNA levels decreased in HU rat cerebral arteries but not in mesenteric arteries. NADPH oxidases were activated significantly more in cerebral but not in mesenteric arteries of HU rats. NADPH oxidase inhibition with apocynin attenuated cerebrovascular ROS production and partially restored Nox2/Nox4 protein and mRNA levels, NADPH oxidase activity, and MnSOD/GPx-1 mRNA levels in cerebral VSMCs of HU rats.
CONCLUSIONThese results suggest that vascular NADPH oxidases regulate cerebrovascular redox status and participate in vascular oxidative stress injury during simulated microgravit.
Acetophenones ; Animals ; Cerebral Arteries ; metabolism ; Glutathione Peroxidase ; metabolism ; Hindlimb Suspension ; Male ; Membrane Glycoproteins ; metabolism ; Mesenteric Arteries ; metabolism ; Myocytes, Smooth Muscle ; metabolism ; NADPH Oxidase 2 ; NADPH Oxidase 4 ; NADPH Oxidases ; antagonists & inhibitors ; metabolism ; Rats, Sprague-Dawley ; Reactive Oxygen Species ; Superoxide Dismutase ; metabolism
6.Catalpol protect diabetic vascular endothelial function by inhibiting NADPH oxidase.
China Journal of Chinese Materia Medica 2014;39(15):2936-2941
The aim of the present study was to evaluate the protective effect of catalpol on vascular endothelial function in STZ-induced type 2 diabetes mellitus (T2DM) rats. 40 high-fat diet with STZ-induced diabetes rats were randomly divided into model group, catalpol low-dose, middle-dose and high-dose group (10, 50, 100 mg x kg(-1) x d(-1)), 10 normal Wistar rats were used as the normal group. The normal and model groups were given an equivalent amount of saline. All reagents were administered by oral gavage for 6 weeks. After 6 weeks, blood glucose and lipids were detected by an automatic biochemical analyzer. The endothelium-dependent vasodilation response of thoracic aortar was detected. The pathological changes of the thoracic aorta were observed by HE staining. Ser- um nitric oxide (NO), 8-iso prostaglandin F2α (8-iso-PGF2α) and superoxide dismutase (SOD) were detected by ELISA. Reactive oxygen species (ROS) level of thoracic aorta was detected by fluorescence method. The expression of Nox4 and p22phox mRNA and protein in aortic tissue were detected by RT-PCR and Western-blot respectively. After catalpol treatment, endothelial damage of thoracic aorta was attenuated significantly; ROS level of thoracic aorta and serum level of 8-iso-PGF2α were decreased significantly; serum NO and SOD levels were remarkably elevated; expression of Nox4, p22phox mRNA and protein in thoracic aorta were significantly reduced (P < 0.05). Therefore, catalpol has protective effect on endothelial of T2DM, its mechanism may be associated with the down-regulation of Nox4 and p22phox expression, inhibiting oxidative stress reaction response.
Animals
;
Blood Glucose
;
metabolism
;
Diabetes Mellitus, Experimental
;
pathology
;
Diabetes Mellitus, Type 2
;
pathology
;
Dinoprost
;
analogs & derivatives
;
metabolism
;
Endothelium, Vascular
;
drug effects
;
metabolism
;
pathology
;
Enzyme Inhibitors
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Iridoid Glucosides
;
pharmacology
;
Male
;
NADPH Oxidase 4
;
NADPH Oxidases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Nitric Oxide
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Wistar
;
Reactive Oxygen Species
;
metabolism
;
Superoxide Dismutase
;
metabolism
7.Effect of Bilirubin on Triglyceride Synthesis in Streptozotocin-Induced Diabetic Nephropathy.
Jianwei XU ; Eun Seong LEE ; Seon Ha BAEK ; Shin Young AHN ; Sejoong KIM ; Ki Young NA ; Dong Wan CHAE ; Ho Jun CHIN
Journal of Korean Medical Science 2014;29(Suppl 2):S155-S163
We aimed to elucidate the effect of bilirubin on dyslipidemia and nephropathy in a diabetes mellitus (DM) type I animal model. Sprague-Dawley rats were separated into control, DM, and bilirubin-treated DM (Bil) groups. The Bil group was injected intraperitoneally with 60 mg/kg bilirubin 3 times per week and hepatoma cells were cultured with bilirubin at a concentration of 0.3 mg/dL. The Bil group showed lower serum creatinine levels 5 weeks after diabetes onset. Bilirubin treatment also decreased the amount of mesangial matrix, lowered the expression of renal collagen IV and transforming growth factor (TGF)-beta1, and reduced the level of apoptosis in the kidney, compared to the DM group. These changes were accompanied by decreased tissue levels of hydrogen superoxide and NADPH oxidase subunit proteins. Bilirubin decreased serum total cholesterol, high-density lipoprotein cholesterol (HDL-C), free fatty acids, and triglycerides (TGs), as well as the TG content in the liver tissues. Bilirubin suppressed protein expression of LXRalpha, SREBP-1, SCD-1, and FAS, factors involved in TG synthesis that were elevated in the livers of DM rats and hepatoma cells under high-glucose conditions. In conclusion, bilirubin attenuates renal dysfunction and dyslipidemia in diabetes by suppressing LXRalpha and SREBP-1 expression and oxidative stress.
Animals
;
Bilirubin/pharmacology/*therapeutic use
;
Cell Line, Tumor
;
Creatine/blood
;
Diabetes Mellitus, Experimental/chemically induced/complications/*pathology
;
Diabetic Nephropathies/*drug therapy/etiology
;
Disease Models, Animal
;
Kidney/pathology
;
Lipoproteins, HDL/blood
;
Liver/metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NADPH Oxidase/metabolism
;
Orphan Nuclear Receptors/antagonists & inhibitors/genetics/metabolism
;
Oxidative Stress/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism
;
Streptozocin/toxicity
;
Triglycerides/analysis/*biosynthesis/blood
8.Bilirubin Activates Transcription of HIF-1alpha in Human Proximal Tubular Cells Cultured in the Physiologic Oxygen Content.
Sung Gyun KIM ; Shin Young AHN ; Eun Seong LEE ; Sejoong KIM ; Ki Young NA ; Dong Wan CHAE ; Ho Jun CHIN
Journal of Korean Medical Science 2014;29(Suppl 2):S146-S154
The expression of hypoxia-inducible factor (HIF) is influenced by reactive oxygen species (ROS). Effect of bilirubin on HIF-1 expression in proximal tubular cells was investigated under physiological oxygen concentration, which is relative hypoxic condition mimicking oxygen content in the medulla of renal tissue. The human kidney (HK2) cells were cultured in 5% oxygen with or without bilirubin. HIF-1alpha protein expression was increased by bilirubin treatment at 0.01-0.2 mg/dL concentration. The messenger RNA expression of HIF-1alpha was increased by 1.69+/-0.05 folds in the cells cultured with 0.1 mg/dL bilirubin, compared to the control cells. The inhibitors of PI3K/mTOR, PI3K/AKT, and ERK 1/2 pathways did not attenuate increased HIF-1alpha expression by bilirubin. HIF-1alpha expression decreased by 10 microM exogenous hydrogen peroxide (H2O2); scavenger of ROS with or without bilirubin in the HK2 cells increased HIF-1alpha concentration more than that in the cells without bilirubin. Exogenous H2O2 decreased the phosphorylation of P70S6 kinase, which was completely reversed by bilirubin treatment. Knockdown of NOX4 gene by small interfering RNA (siRNA) increased HIF-1alpha mRNA expression. In coonclusion, bilirubin enhances HIF-1alpha transcription as well as the up-regulation of HIF-1alpha protein translation through the attenuation of ROS and subunits of NADPH oxidase.
Bilirubin/*pharmacology
;
Cell Line
;
Epithelial Cells/cytology/metabolism
;
Humans
;
Hydrogen Peroxide/toxicity
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/*metabolism
;
Kidney Tubules, Proximal/cytology
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
NADPH Oxidase/antagonists & inhibitors/genetics/metabolism
;
Oxygen/*pharmacology
;
Phosphatidylinositol 3-Kinases/metabolism
;
Phosphorylation/drug effects
;
Proto-Oncogene Proteins c-akt/metabolism
;
RNA Interference
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism
;
Signal Transduction/drug effects
;
TOR Serine-Threonine Kinases/metabolism
;
Transcriptional Activation/*drug effects
;
Up-Regulation/drug effects
9.Research on the mechanism and regulation of overtraining-related the function of neutrophils by the inhibitor of NADPH oxidase and glutamine supplementation.
Chinese Journal of Applied Physiology 2013;29(4):339-344
OBJECTIVETo investigate the method and mechanism for exercise-related immunosuppression via the inhibitor of NADPH oxidase diphenyleneiodonium(DPI) and glutamine supplementation and on the function of neutrophils after overtraining.
METHODSFifty male Wistar rats were randomly divided into five groups: a negative control group (C), an overtraining group (E), an overtraining + DPI intervention group (D), an overtraining+ glutamine supplementation group(G) and combined glutamine + DPI intervention group(DG). After 36 - 40 h from the last training, eight rats were randomly selected from each group, and blood was sampled from the orbital vein. ELISAs were used to measure serum cytokine levels and lipid peroxidation in blood plasma. Flow cytometry was used to measure neutrophil respiratory burst and phagocytosis. The activity of NADPH oxidase was assessed by chemiluminescence and the gene expression of gp91(phox) and p47(phox) of the NADPH-oxidase subunit was checked by Western blot.
RESULTSCompared with group C, the plasma concentrations of NO increased in group G, and the NO, cytokine-induced neutrophil chemoattractant (CINC) concentrations in group DG increased significantly. The respiratory burst and phagocytosis function of neutrophils were decreased in group E, but in group DG were increased when compared with those of group E. After overtraining the expression of gp91(phox) and p47(phox) was up regulated in group E. There were no significant changes in other groups except group DG, in which the expression of gp91(phox) was down regulated. Compared with group E, the expression of gp91(phox) and p47(phox) was up regulated in group D, group G and group DG.
CONCLUSIONThe activation of NADPH oxidase is responsible for the production of superoxide anions, which may be related to the decrease in neutrophil function after over training and is the mechanism of exercise-related immunosuppression. The DPI treatment combined glutamine supplementation can reverse the decrease neutrophils function after overtraining in vitro.
Animals ; Dietary Supplements ; Glutamine ; pharmacology ; Hyperkinesis ; physiopathology ; Male ; Membrane Glycoproteins ; metabolism ; NADPH Oxidase 2 ; NADPH Oxidases ; antagonists & inhibitors ; metabolism ; Neutrophils ; metabolism ; physiology ; Onium Compounds ; pharmacology ; Oxidation-Reduction ; Rats ; Rats, Wistar ; Respiratory Burst ; physiology
10.Aldosterone antagonist inhibits fibrosis-induced NOX4 protein expression in hepatic cells and tissues of rats.
Wen-yong ZHANG ; Yang LI ; Ting LI ; Zuo-wei NING ; Wei LI ; Xu LI
Chinese Journal of Hepatology 2013;21(7):519-523
OBJECTIVETo investigate the inhibitory potential of aldosterone antagonist on NOX4 protein expression in hepatic fibrosis by using a rat model of carbon tetrachloride (CCl4)-induced hepatotoxicity.
METHODSTwenty-four male Wistar rats were randomly divided into three equal groups: fibrosis model group (receiving three subcutaneous injections per week of 2.5 ml/kg 40% CCl4); spironolactone (Sp)-treated fibrosis model group (receiving CCl4 regimen plus three injections per day of 20 mg/kg Sp in olive oil); negative-treatment fibrosis model group (receiving CCl4 regimen plus three injections per day of olive oil alone). Unmanipulated rats (receiving no CCl4 and no supplemental treatments) served as normal controls. After 4 weeks, liver histology was carried out to assess cytotoxicity (by hematoxylin-eosin staining), fibrosis (by Masson staining and METAVIR scoring), and NOX4 protein expression (by immunohistochemistry). In addition, in vitro analyses of immortalized rat hepatic stellate cells, HSC-T6, were performed to evaluate dose-response (10-9, 10-7 and 10-5 mol/L) and time-response (6, 12 and 24 h) of aldosterone agonist (Ald) and an aldosterone antagonist, eplerenone (EPLE). Effects on NOX4 protein expression were evaluated by western blotting.
RESULTSThe fibrosis model group showed significantly more fibrosis than the normal control group (16.060 +/- 0.300 vs. 2.471 +/- 0.160, P = 0.000]; however, the Sp-treated fibrosis model group showed significantly less CCl4-induced fibrosis (5.761 +/- 0.152 vs. model: 16.060 +/- 0.300, P = 0.000). The fibrosis model group also showed significantly higher NOX4 protein expression in liver tissues than the normal control group (7.231 +/- 0.211 vs. 1.350 +/- 0.252, P = 0.000), and the Sp-treated fibrosis model tissues showed significantly less CCl4-induced up-regulated NOX4 protein expression (4.270 +/- 0.242 vs. model: 7.231 +/- 0.211, P = 0.000]. Ald induced up-regulated NOX4 protein expression in HSC-T6 cells in dose- and concentration-dependent manners, with the peak expression being induced by the 10-5 mol/L concentration and 24 h exposure. The Ald-treated cells expressed significantly more NOX4 protein than the untreated control cells (0.710 +/- 0.011 vs. 0.316 +/- 0.015, P = 0.000]. and the EPLE-treated cells showed significantly less Ald-induced up-regulated NOX4 expression (0.615 +/- 0.014 vs. 0.710 +/- 0.011, P = 0.000].
CONCLUSIONAldosterone antagonists inhibit the fibrosis-induced NOX4 protein expression in rat hepatic cells.
Animals ; Cell Line ; Liver Cirrhosis, Experimental ; metabolism ; Male ; Mineralocorticoid Receptor Antagonists ; pharmacology ; NADPH Oxidase 4 ; NADPH Oxidases ; metabolism ; Rats ; Rats, Wistar

Result Analysis
Print
Save
E-mail