1.<i>AIFM1i> variants associated with auditory neuropathy spectrum disorder cause apoptosis due to impaired apoptosis-inducing factor dimerization.
Yue QIU ; Hongyang WANG ; Huaye PAN ; Jing GUAN ; Lei YAN ; Mingjie FAN ; Hui ZHOU ; Xuanhao ZHOU ; Kaiwen WU ; Zexiao JIA ; Qianqian ZHUANG ; Zhaoying LEI ; Mengyao LI ; Xue DING ; Aifu LIN ; Yong FU ; Dong ZHANG ; Qiuju WANG ; Qingfeng YAN
Journal of Zhejiang University. Science. B 2023;24(2):172-184
Auditory neuropathy spectrum disorder (ANSD) represents a variety of sensorineural deafness conditions characterized by abnormal inner hair cells and/or auditory nerve function, but with the preservation of outer hair cell function. ANSD represents up to 15% of individuals with hearing impairments. Through mutation screening, bioinformatic analysis and expression studies, we have previously identified several apoptosis-inducing factor (AIF) mitochondria-associated 1 (<i>AIFM1i>) variants in ANSD families and in some other sporadic cases. Here, to elucidate the pathogenic mechanisms underlying each <i>AIFM1i> variant, we generated AIF-null cells using the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system and constructed AIF-wild type (WT) and AIF-mutant (mut) (p.T260A, p.R422W, and p.R451Q) stable transfection cell lines. We then analyzed AIF structure, coenzyme-binding affinity, apoptosis, and other aspects. Results revealed that these variants resulted in impaired dimerization, compromising AIF function. The reduction reaction of AIF variants had proceeded slower than that of AIF-WT. The average levels of AIF dimerization in AIF variant cells were only 34.5%‒49.7% of that of AIF-WT cells, resulting in caspase-independent apoptosis. The average percentage of apoptotic cells in the variants was 12.3%‒17.9%, which was significantly higher than that (6.9%‒7.4%) in controls. However, nicotinamide adenine dinucleotide (NADH) treatment promoted the reduction of apoptosis by rescuing AIF dimerization in AIF variant cells. Our findings show that the impairment of AIF dimerization by <i>AIFM1i> variants causes apoptosis contributing to ANSD, and introduce NADH as a potential drug for ANSD treatment. Our results help elucidate the mechanisms of ANSD and may lead to the provision of novel therapies.
Humans
;
Apoptosis Inducing Factor/metabolism*
;
NAD/metabolism*
;
Dimerization
;
Apoptosis
2.Compound heterozygous NDUFS1 variants identified in a Chinese pedigree affected with mitochondrial respiratory chain complex I deficiency.
Chao GAO ; Baiyun CHEN ; Yang GAO ; Huichun ZHANG ; Liye SHI ; Weimeng LI ; Haibei LI ; Jiaojiao HUANG
Chinese Journal of Medical Genetics 2021;38(3):247-250
OBJECTIVE:
To explore the genetic basis for a Chinese pedigree with suspected mitochondrial functional defects through combined next-generation sequencing (NGS), copy number variation sequencing (CNV-seq), and mitochondrial DNA (mtDNA) sequencing.
METHODS:
Clinical data of the proband and his family members were collected. The patient and his parents were subjected to family-trio whole-exome sequencing (WES), CNV-seq and mtDNA variant detection. Candidate variant was verified by Sanger sequencing.
RESULTS:
Trio-WES revealed that the proband has carried compound heterozygous variants of the NDUFS1 gene, including a paternally derived c.64C>T (p.R22X) nonsense variant and a maternally derived c.845A>G (p.N282S) missense variant. Both variants may cause loss of protein function. No variant that may cause the phenotype was identified by CNV-seq and mtDNA variant analysis.
CONCLUSION
Children with suspected mitochondrial disorders may have no specific syndromes or laboratory findings. A comprehensive strategy including mtDNA testing may facilitate the diagnosis and early clinical interventions.
Child
;
China
;
DNA Copy Number Variations
;
Electron Transport
;
Humans
;
Mutation
;
NADH Dehydrogenase/genetics*
;
Pedigree
3.Construction and optimization of squalene epoxide synthetic pathway in Escherichia coli.
Xixi SHAO ; Yunhe MENG ; Shenting ZHOU ; Xinting LIU ; Huishu JIANG ; Xiao XIAO ; Jing YANG ; Gongyuan WEI ; Chonglong WANG
Chinese Journal of Biotechnology 2021;37(6):2105-2115
Triterpenoids are a class of natural products of great commercial value that are widely used in pharmaceutical, health care and cosmetic industries. The biosynthesis of triterpenoids relies on the efficient synthesis of squalene epoxide, which is synthesized from the NADPH dependent oxidation of squalene catalyzed by squalene epoxidase. We screened squalene epoxidases derived from different species, and found the truncated squalene epoxidase from Rattus norvegicus (RnSETC) showed the highest activity in engineered Escherichia coli. Further examination of the effect of endogenous cytochrome P450 reductase like (CPRL) proteins showed that overexpression of NADH: quinone oxidoreductase (WrbA) under Lac promoter in a medium-copy number plasmid increased the production of squalene epoxide by nearly 2.5 folds. These results demonstrated that the constructed pathway led to the production of squalene epoxide, an important precursor for the biosynthesis of triterpenoids.
Animals
;
Escherichia coli/genetics*
;
NADPH-Ferrihemoprotein Reductase
;
Protein Engineering
;
Rats
;
Repressor Proteins
;
Squalene
;
Squalene Monooxygenase/genetics*
4.Resveratrol inhibits hypoxia-induced oxidative stress and proliferation in pulmonary artery smooth muscle cells through the HIF-1α/NOX4/ROS signaling pathway.
Li-Nan HE ; Yu-Ru LAN ; Guang-Ming HE ; Shu-Jin GUO ; Fu-Qiang WEN ; Tao WANG
Acta Physiologica Sinica 2020;72(5):551-558
The purpose of the present study was to determine the effects of resveratrol on hypoxia-induced oxidative stress and proliferation in pulmonary artery smooth muscle cells (PASMCs) and the underlying mechanism. Primary rat PASMCs were isolated and cultured in vitro and pretreated with different concentrations of resveratrol (10, 20, and 40 µmol/L) or the NADPH oxidase (NOX) inhibitor VAS2870 (10 µmol/L) for 0.5 h. The cells were then cultured under normoxia (21% O
Animals
;
Cell Proliferation
;
Cells, Cultured
;
Hypoxia
;
Myocytes, Smooth Muscle
;
NADPH Oxidase 4
;
Oxidative Stress
;
Pulmonary Artery
;
Rats
;
Reactive Oxygen Species
;
Resveratrol/pharmacology*
;
Signal Transduction
5.Verification of accuracy of warfarin stable dose prediction models in Shandong population.
Yiping GE ; Fengxia QU ; Songtao WANG ; Xiao GUO ; Cuicui WANG ; Shiyun LIU ; Aiqing MA ; Xianyan JIANG ; Kai TAN
Chinese Journal of Medical Genetics 2020;37(4):401-404
OBJECTIVE:
To compare the accuracy of five warfarin-dosing algorithms and warfarin stable dose model (2.5 mg/day) for Shandong population.
METHODS:
One hundred and twenty five patients who achieved stable warfarin dose were enrolled. Clinical and genetic data were used to evaluate the value of each algorithm by calculating the percentage of patients whose predicted warfarin dose was within 20% of the actual stable therapeutic dose and mean absolute error (MAE).
RESULTS:
The frequency of patients with CYP2C9*1/*1, CYP2C9*1/*3 and CYP2C9*1/*2 genotype was 92.00%, 7.20%, 0.80%, respectively. That of VKORC1-1639 AA, AG and GG genotype was 82.40%, 15.20%, 2.40%, respectively. CYP4F2*1/*1, *1/*3, *3/*3 genotype was 50.40%, 39.20%, 10.40%, respectively. With the same genotypes for other loci, patients who carried at least one VKORC1-16398G mutant allele had increased warfarin stable daily dose compared with VKORC1-1639AA. Compared with CYP4F2*1/*1, those carrying at least one CYP4F2*3 mutant allele had warfarin stable daily dose increased by 5.9%-13.00%. The percentage of ideal prediction calculated from IWPC model (59.20%), Huang model (57.60%) and Ohno model (52.80%) were higher than others. The MAE were 0.35 (95%CI: 0.11-0.49), 0.15 (95%CI: 0.10-0.32), 0.39 (95%CI: 0.12-0.51), respectively.
CONCLUSION
The polymorphisms of CYP2C9, VKORC1 and CYP4F2 genes can influence the stable dose of warfarin in Shandong population. IWPC algorithm is suitable for guiding the use of warfarin in this population.
Anticoagulants
;
administration & dosage
;
Aryl Hydrocarbon Hydroxylases
;
Cytochrome P-450 CYP2C9
;
genetics
;
Cytochrome P450 Family 4
;
genetics
;
Dose-Response Relationship, Drug
;
Genotype
;
Humans
;
Models, Theoretical
;
Polymorphism, Genetic
;
Vitamin K Epoxide Reductases
;
genetics
;
Warfarin
;
administration & dosage
6.Influence of LBP alone or Combined with TRAIL on Apoptosis of MLL Rearranged Leukemic Cells.
Cheng CHEN ; Yu MA ; Yi-De LI ; Xiao-Chun ZHANG
Journal of Experimental Hematology 2019;27(4):1104-1110
OBJECTIVE:
To investigate the effect of lycium barbarum polysaccharide (LBP) alone or combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the apoptosis of leukemia cell lines with MLL gene-rearrangement, and to explore the cell apoptotic pathway after the combined action.
METHODS:
MLL-ALL cell line KOCL44 and KOCL45 were selected as the research object, then the control and experimental groups were set up. The cell survival rate was measured by the trypan blue dye exclusion method, the cell early apoptosis and expression of death receptors on the cell surface were detected by flow cytometry with Annexin-V/PI double staining. The protein level of caspase-8, BID, caspase-3, caspase-9, BAD, BCL-2, as well as mitochondrial and cytosol Cyto-C were detected by Western blot.
RESULTS:
LBF combined with TRAIL inhibited the growth of KOCL44 and KOCL-45 cells and showed the synergistic effect, the results of flow cytometry with Amnexiu V/PI double staining were consistent with above-mentioned results. After treatment of KOCL44 and KOCL45 cells with LBF plus TRAIL, the significant expression of DR4 on cell surface was not found, while the expression of DR4 receptor was enhanced significantly, the pro-apoptotic proteins including caspase-8, BID, caspase-3, caspase-9 and BAD were activated significantly and BCL-2 was suppressed significantly with time-dependent manner. The expression of mitochondria cyto-C in KOCL44 and KOCL45 decreased along with prolonging of treatment time (r=-0.95, r=-0.866), while the expression of cytosol cyto-C in KOCL44 and KOCL45 increased along with prolonging of treatment time (r=0.883, r=0.903).
CONCLUSION
The combination of LBP and TRAIL significantly increases the apoptosis of KOCL44 and KOCL45, and the LBP and TRAIL can up-regulate the expression of TRAIL death receptor-DR5 on the cell surface, activate the pathway of caspase and mito-chrondia mitachondria, thus enhance the sensitivity of KOCL44 and KOCL45 to TRAIL induced apoptosis through both mitochondrial and apoptotic pathway.
Apoptosis
;
Caspase 8
;
Drugs, Chinese Herbal
;
Leukemia, Myeloid, Acute
;
Receptors, TNF-Related Apoptosis-Inducing Ligand
;
TNF-Related Apoptosis-Inducing Ligand
;
Tumor Necrosis Factor-alpha
7.Protective effects of exogenous vitamin D on nerve injury in mice with cerebral ischemia/reperfusion.
Chinese Journal of Applied Physiology 2019;35(4):300-303
OBJECTIVE:
To investigate the effects of 1,25-dihydroxyvitamin D3 (1,25-VitD3) supplementation on cerebral injury after ischemia/reperfusion (I/R) in mice with middle cerebral artery occlusion (MCAO).
METHODS:
Male C57BL6 mice were randomly divided into Sham group, Vehicle group and 1,25-VitD3 group, with 10 mice in each group. Vehicle group and 1,25-VitD3 group were given MCAO for 1 hour, and then killed after reperfusion for 24 hours. Mice in 1,25-VitD3 group were treated with 1,25-VitD3 at the dose of 100 ng/(kg·d) by injected intraperitoneally for 5 days before MCAO operation. Cerebral ischemic penumbra areas of each group were collected for TTC staining, RT-PCR, TTC staining and immunohistochemistry assay. The function defect of mice was evaluated by using neurological function score.
RESULTS:
Compared with the sham group, the volume of cerebral infarction in Vehicle group was increased significantly, and the expressions of IL-6, IL-1beta and Gp91phox in brain tissues were increased significantly (P<0.05); compared with Vehicle group, supplementation of 1,25-VitD3 reduced the volume of cerebral infarction by about 50% in I/R mice (P<0.05), and the expressions of IL-6, IL-1beta and Gp91phox in brain tissues of 1,25-VitD3 group were decreased significantly (P<0.05). The expression of Foxp3, a T-regulatory cell marker, was significantly increased in the brain of mice (P<0.05), while the expression of Rorc, a transcription factor, was significantly decreased (P<0.05), suggesting that Th17/gamma Delta T-cell response was reduced and the number of neutrophils in the brain injury site of mice was significantly reduced (P<0.05).
CONCLUSION
Vitamin D could alleviate the development of cerebral infarction after arterial occlusion (MCAO) reperfusion, and its mechanism may be through regulating the inflammatory response in mouse brain I/R.
Animals
;
Brain
;
Cytokines
;
metabolism
;
Infarction, Middle Cerebral Artery
;
drug therapy
;
Inflammation
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NADPH Oxidase 2
;
metabolism
;
Protective Agents
;
pharmacology
;
Random Allocation
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
drug therapy
;
T-Lymphocytes
;
Th17 Cells
;
Vitamin D
;
pharmacology
8.Research on the mechanism of high glucose affecting the apoptosis of schwann cells by Nox4 NADPH oxidase.
Ting YU ; Qing XIN ; Fei XU ; Lei LI
Chinese Journal of Applied Physiology 2019;35(2):130-134
OBJECTIVE:
To investigate the mechanism of high glucose affecting the apoptosis of schwann cells through Nox4 NADPH oxidase.
METHODS:
The schwann cells of newborn Wistar rats were cultured in vitro. The cultured cells were divided into four groups: control group, high-glucose group, NOX4 siRNA group and control siRNA group (n=10). The WST-1 method was used to detect the cell vitality, and the DCFH-DA method was used to detect the contents of intracellular reactive oxygen free radicals (ROS). Nox4 and Caspase3 mRNA expressions were detected by real-time fluorescence quantitative RT-PCR. Nox4 and Caspase3 protein expressions were determined by Western blot.
RESULTS:
High glucose culture up-regulated Nox4 mRNA and protein expressions of schwann cells, decreased activity of schwann cells, increased intracellular ROS content, and promoted apoptosis by increasing Caspase3 mRNA and protein expressions. NOX4 siRNA blocked the accumulation of ROS in the high glucose cultured schwann cells, and reduced the damage of glucose on cell viability, by inhibiting NOX4 gene expression. NOX4 siRNA also reduced cell apoptosis by down-regulating Caspase3 mRNA and protein expressions.
CONCLUSION
Nox4 was involved in the hyperglycemic-induced apoptosis of schwann cells through ROS. The regulation of Nox4 expression or function might be a new way to treat diabetic peripheral neuropathy.
Animals
;
Apoptosis
;
Caspase 3
;
metabolism
;
Cells, Cultured
;
Culture Media
;
Glucose
;
NADPH Oxidase 4
;
metabolism
;
Rats
;
Rats, Wistar
;
Reactive Oxygen Species
;
metabolism
;
Schwann Cells
;
cytology
;
metabolism
9.Metformin Ameliorates Lipotoxic β-Cell Dysfunction through a Concentration-Dependent Dual Mechanism of Action
Hong Il KIM ; Ji Seon LEE ; Byung Kook KWAK ; Won Min HWANG ; Min Joo KIM ; Young Bum KIM ; Sung Soo CHUNG ; Kyong Soo PARK
Diabetes & Metabolism Journal 2019;43(6):854-866
BACKGROUND: Chronic exposure to elevated levels of free fatty acids contributes to pancreatic β-cell dysfunction. Although it is well known that metformin induces cellular energy depletion and a concomitant activation of AMP-activated protein kinase (AMPK) through inhibition of the respiratory chain, previous studies have shown inconsistent results with regard to the action of metformin on pancreatic β-cells. We therefore examined the effects of metformin on pancreatic β-cells under lipotoxic stress.METHODS: NIT-1 cells and mouse islets were exposed to palmitate and treated with 0.05 and 0.5 mM metformin. Cell viability, glucose-stimulated insulin secretion, cellular adenosine triphosphate, reactive oxygen species (ROS) levels and Rho kinase (ROCK) activities were measured. The phosphorylation of AMPK was evaluated by Western blot analysis and mRNA levels of endoplasmic reticulum (ER) stress markers and NADPH oxidase (NOX) were measured by real-time quantitative polymerase chain reaction analysis.RESULTS: We found that metformin has protective effects on palmitate-induced β-cell dysfunction. Metformin at a concentration of 0.05 mM inhibits NOX and suppresses the palmitate-induced elevation of ER stress markers and ROS levels in a AMPK-independent manner, whereas 0.5 mM metformin inhibits ROCK activity and activates AMPK.CONCLUSION: This study suggests that the action of metformin on β-cell lipotoxicity was implemented by different molecular pathways depending on its concentration. Metformin at a usual therapeutic dose is supposed to alleviate lipotoxic β-cell dysfunction through inhibition of oxidative stress and ER stress.
Adenosine Triphosphate
;
AMP-Activated Protein Kinases
;
Animals
;
Blotting, Western
;
Cell Survival
;
Electron Transport
;
Endoplasmic Reticulum
;
Endoplasmic Reticulum Stress
;
Fatty Acids, Nonesterified
;
Insulin
;
Insulin-Secreting Cells
;
Metformin
;
Mice
;
NADPH Oxidase
;
Oxidative Stress
;
Phosphorylation
;
Polymerase Chain Reaction
;
Reactive Oxygen Species
;
rho-Associated Kinases
;
RNA, Messenger
10.Identity of Spirometra theileri from a Leopard (Panthera pardus) and Spotted Hyena (Crocuta crocuta) in Tanzania
Keeseon S EOM ; Hansol PARK ; Dongmin LEE ; Seongjun CHOE ; Yeseul KANG ; Mohammed Mebarek BIA ; Barakaeli Abdieli NDOSI ; Tilak Chandra NATH ; Chatanun EAMUDOMKARN ; Julius KEYYU ; Robert FYUMAGWA ; Simon MDUMA ; Hyeong Kyu JEON
The Korean Journal of Parasitology 2019;57(6):639-645
In the present study, a Spirometra species of Tanzania origin obtained from an African leopard (Panthera pardus) and spotted hyena (Crocuta crocuta) was identified based on molecular analysis of cytochrome c oxidase I (cox1) and NADH dehydrogenase subunit I (nad1) as well as by morphological observations of an adult tapeworm. One strobila and several segments of a Spirometra species were obtained from the intestine of an African male leopard (Panthera pardus) and spotted hyena (Crocuta crocuta) in the Maswa Game Reserve of Tanzania. The morphological characteristics of S. theileri observed comprised 3 uterine loops on one side and 4 on the other side of the mid-line, a uterine pore situated posterior to the vagina and alternating irregularly either to the right or left of the latter, and vesicular seminis that were much smaller than other Spirometra species. Sequence differences in the cox1 and nad1 genes between S. theileri (Tanzania origin) and S. erinaceieuropaei were 10.1% (cox1) and 12.0% (nad1), while those of S. decipiens and S. ranarum were 9.6%, 9.8% (cox1) and 13.0%, 12.6% (nad1), respectively. The morphological features of the Tanzania-origin Spirometra specimens coincided with those of S. theileri, and the molecular data was also consistent with that of S. theileri, thereby demonstrating the distribution of S. theileri in Tanzania. This places the leopard (Panthera pardus) and spotted hyena (Crocuta crocuta) as new definitive hosts of this spirometrid tapeworm.
Adult
;
Animals
;
Cestoda
;
Electron Transport Complex IV
;
Humans
;
Hyaenidae
;
Intestines
;
Male
;
NADH Dehydrogenase
;
Panthera
;
Spirometra
;
Tanzania
;
Vagina

Result Analysis
Print
Save
E-mail