1.Ethanol Extracts of Cornus alba Improve Benign Prostatic Hyperplasia by Inhibiting Prostate Cell Proliferation through Modulating 5 Alpha-Reductase/ Androgen Receptor Axis-Mediated Signaling
Byungdoo HWANG ; Jongyeob KIM ; Solbi PARK ; Hyun Joo CHUNG ; Hoon KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Soon Chul MYUNG ; Tae-Bin JEONG ; Kyung-Mi KIM ; Jae-Chul JUNG ; Min-Won LEE ; Jin Wook KIM ; Sung-Kwon MOON
The World Journal of Men's Health 2024;42(4):830-841
Purpose:
The aim of this study was to investigate the efficacy of ethanol extracts of Cornus alba (ECA) against benign prostatic hyperplasia (BPH) in vitro and in vivo.
Materials and Methods:
The prostate stromal cells (WPMY-1) and epithelial cells (RWPE-1) were used to examine the action mechanism of ECA in BPH in vitro. ECA efficacy was evaluated in vivo using a testosterone propionate (TP)-induced BPH rat model.
Results:
Treatment with ECA inhibited the proliferation of prostate cells by inducing G1-phase cell cycle arrest through the regulation of positive and negative proteins. Treatment of prostate cells with ECA resulted in alterations in the mitogen-activated protein kinases and protein kinase B signaling pathways. The transcriptional binding activity of the NF-κB motif was suppressed in both ECA-treated prostate cells. In addition, treatment with ECA altered the level of BPH-associated axis markers (5α-reductase, fibroblast growth factor-2, androgen receptor, epidermal growth factor, Bcl-2, and Bax) in both cell lines. Finally, the administration of ECA attenuated the enlargement of prostatic tissues in the TP-induced BPH rat model, accompanied by histology, immunoblot, and serum dihydrotestosterone levels.
Conclusions
These results demonstrated that ECA exerted beneficial effects on BPH both in vitro and in vivo and might provide valuable information in the development of preventive or therapeutic agents for improving BPH.
2.Ethanol Extracts of Cornus alba Improve Benign Prostatic Hyperplasia by Inhibiting Prostate Cell Proliferation through Modulating 5 Alpha-Reductase/ Androgen Receptor Axis-Mediated Signaling
Byungdoo HWANG ; Jongyeob KIM ; Solbi PARK ; Hyun Joo CHUNG ; Hoon KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Soon Chul MYUNG ; Tae-Bin JEONG ; Kyung-Mi KIM ; Jae-Chul JUNG ; Min-Won LEE ; Jin Wook KIM ; Sung-Kwon MOON
The World Journal of Men's Health 2024;42(4):830-841
Purpose:
The aim of this study was to investigate the efficacy of ethanol extracts of Cornus alba (ECA) against benign prostatic hyperplasia (BPH) in vitro and in vivo.
Materials and Methods:
The prostate stromal cells (WPMY-1) and epithelial cells (RWPE-1) were used to examine the action mechanism of ECA in BPH in vitro. ECA efficacy was evaluated in vivo using a testosterone propionate (TP)-induced BPH rat model.
Results:
Treatment with ECA inhibited the proliferation of prostate cells by inducing G1-phase cell cycle arrest through the regulation of positive and negative proteins. Treatment of prostate cells with ECA resulted in alterations in the mitogen-activated protein kinases and protein kinase B signaling pathways. The transcriptional binding activity of the NF-κB motif was suppressed in both ECA-treated prostate cells. In addition, treatment with ECA altered the level of BPH-associated axis markers (5α-reductase, fibroblast growth factor-2, androgen receptor, epidermal growth factor, Bcl-2, and Bax) in both cell lines. Finally, the administration of ECA attenuated the enlargement of prostatic tissues in the TP-induced BPH rat model, accompanied by histology, immunoblot, and serum dihydrotestosterone levels.
Conclusions
These results demonstrated that ECA exerted beneficial effects on BPH both in vitro and in vivo and might provide valuable information in the development of preventive or therapeutic agents for improving BPH.
3.Development of a Deep Learning-Based Predictive Model for Improvement after Holmium Laser Enucleation of the Prostate According to Detrusor Contractility
Jong Hoon LEE ; Jung Hyun KIM ; Myung Jin CHUNG ; Kyu-Sung LEE ; Kwang Jin KO
International Neurourology Journal 2024;28(Suppl 2):S82-89
Purpose:
Predicting improvements in voiding symptoms following deobstructive surgery for male lower urinary tract symptoms/benign prostatic hyperplasia (LUTS/BPH) is challenging when detrusor contractility is impaired. This study aimed to develop an artificial intelligence model that predicts symptom improvement after holmium laser enucleation of the prostate (HoLEP), focusing on changes in maximum flow rate (MFR) and voiding efficiency (VE) 1-month postsurgery.
Methods:
We reviewed 1,933 patients who underwent HoLEP at Samsung Medical Center from July 2008 to January 2024. The study employed a deep neural network (DNN) for multiclass classification to predict changes in MFR and VE, each divided into 3 categories. For comparison, additional machine learning (ML) models such as extreme gradient boosting, random forest classification, and support vector machine were utilized. To address class imbalance, we applied the least squares method and multitask learning.
Results:
A total of 1,142 patients with complete data were included in the study, with 992 allocated for model training and 150 for external validation. In predicting MFR, the DNN achieved a microaverage area under the receiver operating characteristic curve (AUC) of 0.884±0.006, sensitivity of 0.783±0.020, and specificity of 0.891±0.010. For VE prediction, the microaverage AUC was 0.817±0.007, with sensitivity and specificity values of 0.660±0.014 and 0.830±0.007, respectively. These results indicate that the DNN's predictive performance was superior to that of other ML models.
Conclusions
The DNN model provides detailed and accurate predictions for recovery after HoLEP, providing valuable insights for clinicians managing patients with LUTS/BPH.
4.Ethanol Extracts of Cornus alba Improve Benign Prostatic Hyperplasia by Inhibiting Prostate Cell Proliferation through Modulating 5 Alpha-Reductase/ Androgen Receptor Axis-Mediated Signaling
Byungdoo HWANG ; Jongyeob KIM ; Solbi PARK ; Hyun Joo CHUNG ; Hoon KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Soon Chul MYUNG ; Tae-Bin JEONG ; Kyung-Mi KIM ; Jae-Chul JUNG ; Min-Won LEE ; Jin Wook KIM ; Sung-Kwon MOON
The World Journal of Men's Health 2024;42(4):830-841
Purpose:
The aim of this study was to investigate the efficacy of ethanol extracts of Cornus alba (ECA) against benign prostatic hyperplasia (BPH) in vitro and in vivo.
Materials and Methods:
The prostate stromal cells (WPMY-1) and epithelial cells (RWPE-1) were used to examine the action mechanism of ECA in BPH in vitro. ECA efficacy was evaluated in vivo using a testosterone propionate (TP)-induced BPH rat model.
Results:
Treatment with ECA inhibited the proliferation of prostate cells by inducing G1-phase cell cycle arrest through the regulation of positive and negative proteins. Treatment of prostate cells with ECA resulted in alterations in the mitogen-activated protein kinases and protein kinase B signaling pathways. The transcriptional binding activity of the NF-κB motif was suppressed in both ECA-treated prostate cells. In addition, treatment with ECA altered the level of BPH-associated axis markers (5α-reductase, fibroblast growth factor-2, androgen receptor, epidermal growth factor, Bcl-2, and Bax) in both cell lines. Finally, the administration of ECA attenuated the enlargement of prostatic tissues in the TP-induced BPH rat model, accompanied by histology, immunoblot, and serum dihydrotestosterone levels.
Conclusions
These results demonstrated that ECA exerted beneficial effects on BPH both in vitro and in vivo and might provide valuable information in the development of preventive or therapeutic agents for improving BPH.
5.Ethanol Extracts of Cornus alba Improve Benign Prostatic Hyperplasia by Inhibiting Prostate Cell Proliferation through Modulating 5 Alpha-Reductase/ Androgen Receptor Axis-Mediated Signaling
Byungdoo HWANG ; Jongyeob KIM ; Solbi PARK ; Hyun Joo CHUNG ; Hoon KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Soon Chul MYUNG ; Tae-Bin JEONG ; Kyung-Mi KIM ; Jae-Chul JUNG ; Min-Won LEE ; Jin Wook KIM ; Sung-Kwon MOON
The World Journal of Men's Health 2024;42(4):830-841
Purpose:
The aim of this study was to investigate the efficacy of ethanol extracts of Cornus alba (ECA) against benign prostatic hyperplasia (BPH) in vitro and in vivo.
Materials and Methods:
The prostate stromal cells (WPMY-1) and epithelial cells (RWPE-1) were used to examine the action mechanism of ECA in BPH in vitro. ECA efficacy was evaluated in vivo using a testosterone propionate (TP)-induced BPH rat model.
Results:
Treatment with ECA inhibited the proliferation of prostate cells by inducing G1-phase cell cycle arrest through the regulation of positive and negative proteins. Treatment of prostate cells with ECA resulted in alterations in the mitogen-activated protein kinases and protein kinase B signaling pathways. The transcriptional binding activity of the NF-κB motif was suppressed in both ECA-treated prostate cells. In addition, treatment with ECA altered the level of BPH-associated axis markers (5α-reductase, fibroblast growth factor-2, androgen receptor, epidermal growth factor, Bcl-2, and Bax) in both cell lines. Finally, the administration of ECA attenuated the enlargement of prostatic tissues in the TP-induced BPH rat model, accompanied by histology, immunoblot, and serum dihydrotestosterone levels.
Conclusions
These results demonstrated that ECA exerted beneficial effects on BPH both in vitro and in vivo and might provide valuable information in the development of preventive or therapeutic agents for improving BPH.
6.Spinal Cord Infarction Associated with Coronavirus Disease 2019: A Case Report with Magnetic Resonance Imaging Insights
Kyeongil MIN ; Myung Woo PARK ; Hyun Iee SHIN ; Byung Chan LEE ; Du Hwan KIM
Journal of Electrodiagnosis and Neuromuscular Diseases 2024;26(3):62-67
Coronavirus disease 2019 (COVID-19) has been associated with various neurological complications, including the rare occurrence of spinal cord infarction. In this report, we present the case of a 42-year-old man who developed sudden quadriplegia after being diagnosed with COVID-19. Initial magnetic resonance imaging (MRI) provided inconclusive results; however, subsequent imaging revealed diffusion restriction and vertebral body signal changes, indicative of ischemic changes in the spinal cord. The patient received anticoagulation and corticosteroid therapy followed by rehabilitation, resulting in partial recovery of motor function. This case illustrates the importance of considering spinal cord infarction in patients with COVID-19 who present with neurological symptoms. Furthermore, it highlights the crucial role of MRI, including diffusion-weighted imaging, in diagnosis.
7.Development of a Deep Learning-Based Predictive Model for Improvement after Holmium Laser Enucleation of the Prostate According to Detrusor Contractility
Jong Hoon LEE ; Jung Hyun KIM ; Myung Jin CHUNG ; Kyu-Sung LEE ; Kwang Jin KO
International Neurourology Journal 2024;28(Suppl 2):S82-89
Purpose:
Predicting improvements in voiding symptoms following deobstructive surgery for male lower urinary tract symptoms/benign prostatic hyperplasia (LUTS/BPH) is challenging when detrusor contractility is impaired. This study aimed to develop an artificial intelligence model that predicts symptom improvement after holmium laser enucleation of the prostate (HoLEP), focusing on changes in maximum flow rate (MFR) and voiding efficiency (VE) 1-month postsurgery.
Methods:
We reviewed 1,933 patients who underwent HoLEP at Samsung Medical Center from July 2008 to January 2024. The study employed a deep neural network (DNN) for multiclass classification to predict changes in MFR and VE, each divided into 3 categories. For comparison, additional machine learning (ML) models such as extreme gradient boosting, random forest classification, and support vector machine were utilized. To address class imbalance, we applied the least squares method and multitask learning.
Results:
A total of 1,142 patients with complete data were included in the study, with 992 allocated for model training and 150 for external validation. In predicting MFR, the DNN achieved a microaverage area under the receiver operating characteristic curve (AUC) of 0.884±0.006, sensitivity of 0.783±0.020, and specificity of 0.891±0.010. For VE prediction, the microaverage AUC was 0.817±0.007, with sensitivity and specificity values of 0.660±0.014 and 0.830±0.007, respectively. These results indicate that the DNN's predictive performance was superior to that of other ML models.
Conclusions
The DNN model provides detailed and accurate predictions for recovery after HoLEP, providing valuable insights for clinicians managing patients with LUTS/BPH.
8.Development of a Deep Learning-Based Predictive Model for Improvement after Holmium Laser Enucleation of the Prostate According to Detrusor Contractility
Jong Hoon LEE ; Jung Hyun KIM ; Myung Jin CHUNG ; Kyu-Sung LEE ; Kwang Jin KO
International Neurourology Journal 2024;28(Suppl 2):S82-89
Purpose:
Predicting improvements in voiding symptoms following deobstructive surgery for male lower urinary tract symptoms/benign prostatic hyperplasia (LUTS/BPH) is challenging when detrusor contractility is impaired. This study aimed to develop an artificial intelligence model that predicts symptom improvement after holmium laser enucleation of the prostate (HoLEP), focusing on changes in maximum flow rate (MFR) and voiding efficiency (VE) 1-month postsurgery.
Methods:
We reviewed 1,933 patients who underwent HoLEP at Samsung Medical Center from July 2008 to January 2024. The study employed a deep neural network (DNN) for multiclass classification to predict changes in MFR and VE, each divided into 3 categories. For comparison, additional machine learning (ML) models such as extreme gradient boosting, random forest classification, and support vector machine were utilized. To address class imbalance, we applied the least squares method and multitask learning.
Results:
A total of 1,142 patients with complete data were included in the study, with 992 allocated for model training and 150 for external validation. In predicting MFR, the DNN achieved a microaverage area under the receiver operating characteristic curve (AUC) of 0.884±0.006, sensitivity of 0.783±0.020, and specificity of 0.891±0.010. For VE prediction, the microaverage AUC was 0.817±0.007, with sensitivity and specificity values of 0.660±0.014 and 0.830±0.007, respectively. These results indicate that the DNN's predictive performance was superior to that of other ML models.
Conclusions
The DNN model provides detailed and accurate predictions for recovery after HoLEP, providing valuable insights for clinicians managing patients with LUTS/BPH.
9.Ethanol Extracts of Cornus alba Improve Benign Prostatic Hyperplasia by Inhibiting Prostate Cell Proliferation through Modulating 5 Alpha-Reductase/ Androgen Receptor Axis-Mediated Signaling
Byungdoo HWANG ; Jongyeob KIM ; Solbi PARK ; Hyun Joo CHUNG ; Hoon KIM ; Yung Hyun CHOI ; Wun-Jae KIM ; Soon Chul MYUNG ; Tae-Bin JEONG ; Kyung-Mi KIM ; Jae-Chul JUNG ; Min-Won LEE ; Jin Wook KIM ; Sung-Kwon MOON
The World Journal of Men's Health 2024;42(4):830-841
Purpose:
The aim of this study was to investigate the efficacy of ethanol extracts of Cornus alba (ECA) against benign prostatic hyperplasia (BPH) in vitro and in vivo.
Materials and Methods:
The prostate stromal cells (WPMY-1) and epithelial cells (RWPE-1) were used to examine the action mechanism of ECA in BPH in vitro. ECA efficacy was evaluated in vivo using a testosterone propionate (TP)-induced BPH rat model.
Results:
Treatment with ECA inhibited the proliferation of prostate cells by inducing G1-phase cell cycle arrest through the regulation of positive and negative proteins. Treatment of prostate cells with ECA resulted in alterations in the mitogen-activated protein kinases and protein kinase B signaling pathways. The transcriptional binding activity of the NF-κB motif was suppressed in both ECA-treated prostate cells. In addition, treatment with ECA altered the level of BPH-associated axis markers (5α-reductase, fibroblast growth factor-2, androgen receptor, epidermal growth factor, Bcl-2, and Bax) in both cell lines. Finally, the administration of ECA attenuated the enlargement of prostatic tissues in the TP-induced BPH rat model, accompanied by histology, immunoblot, and serum dihydrotestosterone levels.
Conclusions
These results demonstrated that ECA exerted beneficial effects on BPH both in vitro and in vivo and might provide valuable information in the development of preventive or therapeutic agents for improving BPH.
10.Combination of Dabrafenib and Trametinib in Patients with Metastatic BRAFV600E-Mutated Thyroid Cancer
Youngkyung JEON ; Sehhoon PARK ; Se-Hoon LEE ; Tae Hyuk KIM ; Sun Wook KIM ; Myung-Ju AHN ; Hyun Ae JUNG ; Jae Hoon CHUNG
Cancer Research and Treatment 2024;56(4):1270-1276
Purpose:
BRAF mutations are detected in 30%-80% of papillary thyroid cancer (PTC) cases. DaBRAFenib and trametinib showed promising antitumor activity in patients with BRAFV600E-mutated metastatic melanoma and non–small cell lung cancer. This study aimed to evaluate the efficacy and safety of daBRAFenib and trametinib in patients with metastatic BRAFV600E-mutated thyroid cancer.
Materials and Methods:
This was a retrospective study to evaluate the efficacy of daBRAFenib and trametinib in patients with metastatic BRAFV600E-mutated PTC. The patients received daBRAFenib 150 mg twice daily and trametinib 2 mg once daily at the Samsung Medical Center. This study evaluated the progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR) overall survival (OS), and safety of daBRAFenib and trametinib.
Results:
Between December 2019 and January 2022, 27 PTC patients including eight patients with poorly differentiated or anaplastic transformation, received daBRAFenib and trametinib. The median age was 73.0 years, and the median follow-up period was 19.8 months. The majority (81.5%) had undergone thyroidectomy, while 8 patients had received prior systemic treatments. ORR was 73.1%, with 19 partial responses, and DCR was 92.3%. Median PFS was 21.7 months, and median OS was 21.7 months. Treatment-related adverse events included generalized weakness (29.6%), fever (25.9%), and gastrointestinal problems (22.2%). Dose reduction due to adverse events was required in 81.5% of the patients.
Conclusion
DaBRAFenib and trametinib demonstrated a high ORR with promising PFS; however, most patients with BRAFV600E-mutated metastatic PTC required a dose reduction.

Result Analysis
Print
Save
E-mail