1.Role of p57KIP2 in Stem and Progenitor Leydig Cells of Mouse Testes
Seung Hyun PARK ; Kyung Noh YOON ; Yang XU ; Myung Chan GYE
The World Journal of Men's Health 2025;43(1):174-187
Purpose:
Precise control of proliferation and differentiation of Leydig cells is important for gonadal androgenesis and spermatogenesis. Though cyclin-dependent kinase inhibitors are crucial for cell proliferation and differentiation, their role in the development of early adult Leydig cells (ALCs) remained unanswered. To understand mechanism for ALC development, functional expression of p57KIP2 (cdkn1c) was investigated in the stem Leydig cells (SLCs) and progenitor Leydig cells (PLCs) in mice.
Materials and Methods:
The roles of p57KIP2 in the proliferation, differentiation, apoptosis, and steroidogenesis in SLCs and PLCs were investigated by antibodies and bromodeoxyuridine (BrdU) labeling in the early neonatal testes and p57kip2 siRNA in the isolated SLCs and PLCs. Steroidogenic differentiation of PLCs was examined by progesterone and testosterone production in cell culture.
Results:
From postnatal day (PND) 1 to 14, p57KIP2(+) spindle-shaped cells in the testis interstitium were α-smooth muscle actin (αSMA)(-), a peritubular myoid cells marker, suggesting that they are SLCs and PLCs. Besides, p57KIP2 was also expressed in HSD3β(+) fetal Leydig cells. From PND1 to 14, BrdU(+)/αSMA(-), Ki67(+)/p57KIP2(+), and BrdU(+)/p57KIP2(+) spindle-shaped cells were gradually decreased. From PND1 to 14, p57KIP in the αSMA(-)/p57KIP2(+) cells was peaked at PND7 and decreased thereafter. In THY1(+) isolated SLCs, p57kip2 siRNA significantly increased ki67 and pcna mRNA and pdgfrα mRNA, a differentiation marker and decreased nestin mRNA, a SLC marker. No significant difference in apoptosis related genes mRNA was found after p57kip2 siRNA treatment. In HSD3β(+) PLCs, p57kip2 siRNA increased proapoptotic genes mRNA, annexin V(+) early-apoptotic cells. Importantly, p57kip2 siRNA significantly decreased hsd3β6 and cyp17a1 mRNA and progesterone production.
Conclusions
p57KIP2 may suppress proliferation and support stemness of SLCs. In PLCs, p57KIP2 may suppress apoptosis and potentiate the steroidogenic differentiation.
2.Role of p57KIP2 in Stem and Progenitor Leydig Cells of Mouse Testes
Seung Hyun PARK ; Kyung Noh YOON ; Yang XU ; Myung Chan GYE
The World Journal of Men's Health 2025;43(1):174-187
Purpose:
Precise control of proliferation and differentiation of Leydig cells is important for gonadal androgenesis and spermatogenesis. Though cyclin-dependent kinase inhibitors are crucial for cell proliferation and differentiation, their role in the development of early adult Leydig cells (ALCs) remained unanswered. To understand mechanism for ALC development, functional expression of p57KIP2 (cdkn1c) was investigated in the stem Leydig cells (SLCs) and progenitor Leydig cells (PLCs) in mice.
Materials and Methods:
The roles of p57KIP2 in the proliferation, differentiation, apoptosis, and steroidogenesis in SLCs and PLCs were investigated by antibodies and bromodeoxyuridine (BrdU) labeling in the early neonatal testes and p57kip2 siRNA in the isolated SLCs and PLCs. Steroidogenic differentiation of PLCs was examined by progesterone and testosterone production in cell culture.
Results:
From postnatal day (PND) 1 to 14, p57KIP2(+) spindle-shaped cells in the testis interstitium were α-smooth muscle actin (αSMA)(-), a peritubular myoid cells marker, suggesting that they are SLCs and PLCs. Besides, p57KIP2 was also expressed in HSD3β(+) fetal Leydig cells. From PND1 to 14, BrdU(+)/αSMA(-), Ki67(+)/p57KIP2(+), and BrdU(+)/p57KIP2(+) spindle-shaped cells were gradually decreased. From PND1 to 14, p57KIP in the αSMA(-)/p57KIP2(+) cells was peaked at PND7 and decreased thereafter. In THY1(+) isolated SLCs, p57kip2 siRNA significantly increased ki67 and pcna mRNA and pdgfrα mRNA, a differentiation marker and decreased nestin mRNA, a SLC marker. No significant difference in apoptosis related genes mRNA was found after p57kip2 siRNA treatment. In HSD3β(+) PLCs, p57kip2 siRNA increased proapoptotic genes mRNA, annexin V(+) early-apoptotic cells. Importantly, p57kip2 siRNA significantly decreased hsd3β6 and cyp17a1 mRNA and progesterone production.
Conclusions
p57KIP2 may suppress proliferation and support stemness of SLCs. In PLCs, p57KIP2 may suppress apoptosis and potentiate the steroidogenic differentiation.
3.Role of p57KIP2 in Stem and Progenitor Leydig Cells of Mouse Testes
Seung Hyun PARK ; Kyung Noh YOON ; Yang XU ; Myung Chan GYE
The World Journal of Men's Health 2025;43(1):174-187
Purpose:
Precise control of proliferation and differentiation of Leydig cells is important for gonadal androgenesis and spermatogenesis. Though cyclin-dependent kinase inhibitors are crucial for cell proliferation and differentiation, their role in the development of early adult Leydig cells (ALCs) remained unanswered. To understand mechanism for ALC development, functional expression of p57KIP2 (cdkn1c) was investigated in the stem Leydig cells (SLCs) and progenitor Leydig cells (PLCs) in mice.
Materials and Methods:
The roles of p57KIP2 in the proliferation, differentiation, apoptosis, and steroidogenesis in SLCs and PLCs were investigated by antibodies and bromodeoxyuridine (BrdU) labeling in the early neonatal testes and p57kip2 siRNA in the isolated SLCs and PLCs. Steroidogenic differentiation of PLCs was examined by progesterone and testosterone production in cell culture.
Results:
From postnatal day (PND) 1 to 14, p57KIP2(+) spindle-shaped cells in the testis interstitium were α-smooth muscle actin (αSMA)(-), a peritubular myoid cells marker, suggesting that they are SLCs and PLCs. Besides, p57KIP2 was also expressed in HSD3β(+) fetal Leydig cells. From PND1 to 14, BrdU(+)/αSMA(-), Ki67(+)/p57KIP2(+), and BrdU(+)/p57KIP2(+) spindle-shaped cells were gradually decreased. From PND1 to 14, p57KIP in the αSMA(-)/p57KIP2(+) cells was peaked at PND7 and decreased thereafter. In THY1(+) isolated SLCs, p57kip2 siRNA significantly increased ki67 and pcna mRNA and pdgfrα mRNA, a differentiation marker and decreased nestin mRNA, a SLC marker. No significant difference in apoptosis related genes mRNA was found after p57kip2 siRNA treatment. In HSD3β(+) PLCs, p57kip2 siRNA increased proapoptotic genes mRNA, annexin V(+) early-apoptotic cells. Importantly, p57kip2 siRNA significantly decreased hsd3β6 and cyp17a1 mRNA and progesterone production.
Conclusions
p57KIP2 may suppress proliferation and support stemness of SLCs. In PLCs, p57KIP2 may suppress apoptosis and potentiate the steroidogenic differentiation.
4.Role of p57KIP2 in Stem and Progenitor Leydig Cells of Mouse Testes
Seung Hyun PARK ; Kyung Noh YOON ; Yang XU ; Myung Chan GYE
The World Journal of Men's Health 2025;43(1):174-187
Purpose:
Precise control of proliferation and differentiation of Leydig cells is important for gonadal androgenesis and spermatogenesis. Though cyclin-dependent kinase inhibitors are crucial for cell proliferation and differentiation, their role in the development of early adult Leydig cells (ALCs) remained unanswered. To understand mechanism for ALC development, functional expression of p57KIP2 (cdkn1c) was investigated in the stem Leydig cells (SLCs) and progenitor Leydig cells (PLCs) in mice.
Materials and Methods:
The roles of p57KIP2 in the proliferation, differentiation, apoptosis, and steroidogenesis in SLCs and PLCs were investigated by antibodies and bromodeoxyuridine (BrdU) labeling in the early neonatal testes and p57kip2 siRNA in the isolated SLCs and PLCs. Steroidogenic differentiation of PLCs was examined by progesterone and testosterone production in cell culture.
Results:
From postnatal day (PND) 1 to 14, p57KIP2(+) spindle-shaped cells in the testis interstitium were α-smooth muscle actin (αSMA)(-), a peritubular myoid cells marker, suggesting that they are SLCs and PLCs. Besides, p57KIP2 was also expressed in HSD3β(+) fetal Leydig cells. From PND1 to 14, BrdU(+)/αSMA(-), Ki67(+)/p57KIP2(+), and BrdU(+)/p57KIP2(+) spindle-shaped cells were gradually decreased. From PND1 to 14, p57KIP in the αSMA(-)/p57KIP2(+) cells was peaked at PND7 and decreased thereafter. In THY1(+) isolated SLCs, p57kip2 siRNA significantly increased ki67 and pcna mRNA and pdgfrα mRNA, a differentiation marker and decreased nestin mRNA, a SLC marker. No significant difference in apoptosis related genes mRNA was found after p57kip2 siRNA treatment. In HSD3β(+) PLCs, p57kip2 siRNA increased proapoptotic genes mRNA, annexin V(+) early-apoptotic cells. Importantly, p57kip2 siRNA significantly decreased hsd3β6 and cyp17a1 mRNA and progesterone production.
Conclusions
p57KIP2 may suppress proliferation and support stemness of SLCs. In PLCs, p57KIP2 may suppress apoptosis and potentiate the steroidogenic differentiation.
5.Role of p57KIP2 in Stem and Progenitor Leydig Cells of Mouse Testes
Seung Hyun PARK ; Kyung Noh YOON ; Yang XU ; Myung Chan GYE
The World Journal of Men's Health 2025;43(1):174-187
Purpose:
Precise control of proliferation and differentiation of Leydig cells is important for gonadal androgenesis and spermatogenesis. Though cyclin-dependent kinase inhibitors are crucial for cell proliferation and differentiation, their role in the development of early adult Leydig cells (ALCs) remained unanswered. To understand mechanism for ALC development, functional expression of p57KIP2 (cdkn1c) was investigated in the stem Leydig cells (SLCs) and progenitor Leydig cells (PLCs) in mice.
Materials and Methods:
The roles of p57KIP2 in the proliferation, differentiation, apoptosis, and steroidogenesis in SLCs and PLCs were investigated by antibodies and bromodeoxyuridine (BrdU) labeling in the early neonatal testes and p57kip2 siRNA in the isolated SLCs and PLCs. Steroidogenic differentiation of PLCs was examined by progesterone and testosterone production in cell culture.
Results:
From postnatal day (PND) 1 to 14, p57KIP2(+) spindle-shaped cells in the testis interstitium were α-smooth muscle actin (αSMA)(-), a peritubular myoid cells marker, suggesting that they are SLCs and PLCs. Besides, p57KIP2 was also expressed in HSD3β(+) fetal Leydig cells. From PND1 to 14, BrdU(+)/αSMA(-), Ki67(+)/p57KIP2(+), and BrdU(+)/p57KIP2(+) spindle-shaped cells were gradually decreased. From PND1 to 14, p57KIP in the αSMA(-)/p57KIP2(+) cells was peaked at PND7 and decreased thereafter. In THY1(+) isolated SLCs, p57kip2 siRNA significantly increased ki67 and pcna mRNA and pdgfrα mRNA, a differentiation marker and decreased nestin mRNA, a SLC marker. No significant difference in apoptosis related genes mRNA was found after p57kip2 siRNA treatment. In HSD3β(+) PLCs, p57kip2 siRNA increased proapoptotic genes mRNA, annexin V(+) early-apoptotic cells. Importantly, p57kip2 siRNA significantly decreased hsd3β6 and cyp17a1 mRNA and progesterone production.
Conclusions
p57KIP2 may suppress proliferation and support stemness of SLCs. In PLCs, p57KIP2 may suppress apoptosis and potentiate the steroidogenic differentiation.
6.Regulation of Phosphorylation of Glycogen Synthase Kinase 3α and the Correlation with Sperm Motility in Human
Seung Hyun PARK ; Young-Pil KIM ; Jeong Min LEE ; Dong-Wook PARK ; Ju Tae SEO ; Myung Chan GYE
The World Journal of Men's Health 2024;42(2):373-383
Purpose:
To unravel the mechanism regulating the phosphorylation of glycogen synthase kinase 3 (GSK3) and the correlation between the inhibitory phosphorylation of GSK3α and sperm motility in human.
Materials and Methods:
The phosphorylation and priming phosphorylated substrate-specific kinase activity of GSK3 were examined in human spermatozoa with various motility conditions.
Results:
In human spermatozoa, GSK3α/β was localized in the head, midpiece, and principal piece of tail and p-GSK3α(Ser21) was enriched in the midpiece. The ratio of p-GSK3α(Ser21)/GSK3α was positively coupled with normal sperm motility criteria of World Health Organization. In high-motility spermatozoa, p-GSK3α(Ser21) phosphotyrosine (p-Tyr) proteins but p-GSK3α(Tyr279) markedly increased together with decreased kinase activity of GSK3 after incubation in Ca2+ containing medium. In high-motility spermatozoa, p-GSK3α(Ser21) levels were negatively coupled with kinase activity of GSK3, and which was deregulated in low-motility spermatozoa. In high-motility spermatozoa, 6-bromo-indirubin-3′-oxime, an inhibitor of kinase activity of GSK3 increased p-GSK3α(Ser21) and p-Tyr proteins. p-GSK3α(Ser21) and p-Tyr protein levels were decreased by inhibition of PKA and Akt. Calyculin A, a protein phosphatase-1/2A inhibitor, markedly increased the p-GSK3α(Ser21) and p-Tyr proteins, and significantly increased the motility of low-motility human spermatozoa.
Conclusions
Down regulation of kinase activity of GSK3α by inhibitory phosphorylation was positively coupled with human sperm motility, and which was regulated by Ca2+, PKA, Akt, and PP1. Small-molecule inhibitors of GSK3 and PP1 can be considered to potentiate human sperm motility.
7.Glycogen Synthase Kinase-3 Isoform Variants and Their Inhibitory Phosphorylation in Human Testes and Spermatozoa
Seung Hyun PARK ; Yang XU ; Yong-Seog PARK ; Ju Tae SEO ; Myung Chan GYE
The World Journal of Men's Health 2023;41(1):215-226
Purpose:
To clarify (phospho-) glycogen synthase kinase-3 (GSK3) isoform variants in the germline and soma of human testes and spermatozoa.
Materials and Methods:
GSK3 isoform variants in normospermatogenic and Sertoli cell-only (SCO) testicular biopsies and spermatozoa were examined.
Results:
In normospermatogenic testes, GSK3α and GSK3β variants 1 and 2 different in low complexity region (LCR) were expressed and their levels were decreased in SCO testes. GSK3β variant 3 was only expressed in SCO testes. GSK3β as well as GSK3α, the dominant isoforms in testes were decreased in SCO testes. In normospermatogenic testes, GSK3β were found in spermatogonia and markedly decreased in meiotic germ cells in which GSK3α was dominant. p-GSK3α/β were marginal in spermatogonia and early spermatocytes. In SCO testes, GSK3α/β immunoreactivity in seminiferous epithelia was weaker than those of normospermatogenic testes whereas p-GSK3α/β(Ser) immunoreactivity was visibly increased in Sertoli cells.GSK3α was dominant in ejaculated spermatozoa in which GSK3α and p-GSK3α(Ser) were found in the head, midpiece, and tail. In acrosome-reacted spermatozoa, GSK3α was found in the equatorial region of head, midpiece, and tail, and p-GSK3α(Ser) was only found in midpiece. During sperm capacitation, p-GSK3α(Ser) was significantly increased together with phosphotyrosine proteins and motility.
Conclusions
In human male germ cells, GSK3 isoforms different in LCRs switch from GSK3β to GSK3α during meiotic entry, suggesting the isoform-specific roles of GSK3α and GSK3β in meiosis and stemness or proliferation of spermatogonia, respectively. In dormant Sertoli cells of SCO testes kinase activity of GSK3 might be downregulated via inhibitory phosphorylation. In spermatozoa, inhibitory phosphorylation of GSK3α might be coupled with activation of motility during capacitation.
8.Objective Evaluation of the Effect of Q-Switched Nd:YAG (532 nm) Laser on Solar Lentigo by Using a Colorimeter.
Ji Seok KIM ; Chan Hee NAM ; Jee Young KIM ; Ji Won GYE ; Seung Phil HONG ; Myung Hwa KIM ; Byung Cheol PARK
Annals of Dermatology 2015;27(3):326-328
No abstract available.
Lentigo*
9.Endoplasmic reticulum stress in periimplantation embryos.
Marek MICHALAK ; Myung Chan GYE
Clinical and Experimental Reproductive Medicine 2015;42(1):1-7
Stress coping mechanisms are critical to minimize or overcome damage caused by ever changing environmental conditions. They are designed to promote cell survival. The unfolded protein response (UPR) pathway is mobilized in response to the accumulation of unfolded proteins, ultimately in order to regain endoplasmic reticulum (ER) homeostasis. Various elements of coping responses to ER stress including Perk, Ask1, Bip, Chop, Gadd34, Ire1, Atf4, Atf6, and Xbp1 have been identified and were found to be inducible in oocytes and preimplantation embryos, suggesting that, as a normal part of the cellular adaptive mechanism, these coping responses, including the UPR, play a pivotal role in the development of preimplantation embryos. As such, the UPR-associated molecules and pathways may become useful markers for the potential diagnosis of stress conditions for preimplantation embryos. After implantation, ER stress-induced coping responses become physiologically important for a normal decidual response, placentation, and early organogenesis. Attenuation of ER stress coping responses by tauroursodeoxycholate and salubrinal was effective for prevention of cell death of cultured embryos. Further elucidation of new and relevant ER stress coping responses in periimplantation embryos might contribute to a comprehensive understanding of the regulation of normal development of embryonic development and potentiation of embryonic development in vitro.
Blastocyst
;
Cell Death
;
Cell Survival
;
Diagnosis
;
Embryonic Development
;
Embryonic Structures*
;
Endoplasmic Reticulum
;
Endoplasmic Reticulum Stress*
;
Female
;
Homeostasis
;
Oocytes
;
Organogenesis
;
Placentation
;
Pregnancy
;
Unfolded Protein Response
10.Pemphigus Vulgaris in Pregnancy Associated with Herpes Virus Type 1 Infection.
Jiwon GYE ; Chan Hee NAM ; Ji Seok KIM ; Jee Young KIM ; Byung Cheol PARK ; Myung Hwa KIM ; Seung Phil HONG
Annals of Dermatology 2014;26(2):258-260
No abstract available.
Pemphigus*
;
Pregnancy*

Result Analysis
Print
Save
E-mail