2.Protective Effect of Angiotensin (1-7) on Silicotic Fibrosis in Rats.
Bo Nan ZHANG ; Hong XU ; Xue Min GAO ; Gui Zhen ZHANG ; Xin ZHANG ; Fang YANG
Biomedical and Environmental Sciences 2019;32(6):419-426
OBJECTIVE:
Silicosis, caused by inhalation of silica dust, is the most serious occupational disease in China and the aim of present study was to explore the protective effect of Ang (1-7) on silicotic fibrosis and myofibroblast differentiation induced by Ang II.
METHODS:
HOPE-MED 8050 exposure control apparatus was used to establish the rat silicosis model. Pathological changes and collagen deposition of the lung tissue were examined by H.E. and VG staining, respectively. The localizations of ACE2 and α-smooth muscle actin (α-SMA) in the lung were detected by immunohistochemistry. Expression levels of collagen type I, α-SMA, ACE2, and Mas in the lung tissue and fibroblasts were examined by western blot. Levels of ACE2, Ang (1-7), and Ang II in serum were determined by ELISA. Co-localization of ACE2 and α-SMA in fibroblasts was detected by immunofluorescence.
RESULTS:
Ang (1-7) induced pathological changes and enhanced collagen deposition in vivo. Ang (1-7) decreased the expressions of collagen type I and α-SMA and increased the expressions of ACE2 and Mas in the silicotic rat lung tissue and fibroblasts stimulated by Ang II. Ang (1-7) increased the levels of ACE2 and Ang (1-7) and decreased the level of Ang II in silicotic rat serum. A779 enhanced the protective effect of Ang (1-7) in fibroblasts stimulated by Ang II.
CONCLUSION
Ang (1-7) exerted protective effect on silicotic fibrosis and myofibroblast differentiation induced by Ang II by regulating ACE2-Ang (1-7)-Mas axis.
Actins
;
metabolism
;
Angiotensin I
;
blood
;
pharmacology
;
therapeutic use
;
Angiotensin II
;
blood
;
Animals
;
Animals, Newborn
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Collagen Type I
;
metabolism
;
Disease Models, Animal
;
Lung
;
metabolism
;
pathology
;
Myofibroblasts
;
drug effects
;
Peptide Fragments
;
blood
;
pharmacology
;
therapeutic use
;
Peptidyl-Dipeptidase A
;
metabolism
;
Rats, Wistar
;
Silicosis
;
metabolism
;
pathology
;
prevention & control
3.Relationship between the Number of Neutrophils and Myofibroblasts during Diabetic Wound Healing and Wound Age.
Jun-jie HUANG ; Yi YAO ; Chong-Jian XIA ; Ya-di ZHAO ; Si YU ; Yuan GAO ; Guang Hua YE ; Lin Sheng YU ; Yan Yan FAN
Journal of Forensic Medicine 2019;35(2):149-153
Objective To investigate the sequential changes of the number of neutrophils and myofibroblasts during diabetic wound healing, and discuss its application value in wound age estimation. Methods Diabetic DB mice and mice of the same age in the normal control group were selected, a wound healing model was established, wound samples were taken at different time points, while the number of neutrophils and myofibroblasts during diabetic wound healing were determined by immunohistochemical staining technique. Results The number of infiltrated neutrophils in the wounds of control and diabetic groups reached the peak respectively at 12 h and 5 d after injury. Compared with the control group, the number of neutrophils in the diabetic group decreased significantly from 6 h to 1 d after injury, but increased markedly from 5 d to 14 d. From 5 d to 10 d after injury, the average number of neutrophils at high magnification in wounds of the diabetic group was over 30, while that of neutrophils in wounds of the control group was less than 20. Myofibroblasts appeared in wounds from 3 d to 14 d after injury in the control group and from 5 d to 14 d after injury in the diabetic group. The difference in the number of myofibroblasts in wounds between control group and diabetic group from 3 to 7 d after injury had statistical significance. Conclusion In comparison with normal wound healing, the number of neutrophils and myofibroblasts during diabetic wound healing shows different sequential changes. The results of this study can provide reference for wound age estimation of patients with severe diabetes.
Animals
;
Diabetes Mellitus, Experimental/pathology*
;
Mice
;
Myofibroblasts
;
Neutrophils
;
Wound Healing/physiology*
4.The Role of Fibrocyte in the Pathogenesis of Silicosis.
Juan LI ; Wu YAO ; Jian Yong HOU ; Lin ZHANG ; Lei BAO ; Hui Ting CHEN ; Di WANG ; Zhong Zheng YUE ; Yi Ping LI ; Miao ZHANG ; Xing Hao YU ; Jian Hui ZHANG ; Ya Qian QU ; Chang Fu HAO
Biomedical and Environmental Sciences 2018;31(4):311-316
Exposure to free silica induces silicosis and myofibroblasts are regarded as primary effector cells. Fibrocytes can differentiate into myofibroblast. Therefore, the present study was designed to investigate whether fibrocytes participate in silicosis. The rat model of silicosis was established. Hematoxylin-eosin stainings and Masson stainings were used to evaluate the histopathology and collagen deposition. Flow cytometry and immunofluorescence were performed to detect the number of fibrocytes and their contribution to myofibroblasts. Results showed that fibrocytes participate in silicosis. Trend analysis of different sources of myofibroblasts during silicosis indicated that fibrocytes and lung type II epithelial cell-derived myofibroblasts play an important role in the early stage of silicosis, while resident lung fibroblast-derived myofibroblasts play a predominant role during the fibrosis formative period.
Animals
;
Disease Models, Animal
;
Lung
;
cytology
;
Myofibroblasts
;
drug effects
;
pathology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Silicon Dioxide
;
toxicity
;
Silicosis
;
etiology
;
pathology
5.Clinicopathological Characteristics of Urinary Bladder Tumors in Korean Patients 20 Years or Younger.
Seong Cheol KIM ; Sejun PARK ; Sang Hoon SONG ; Kun Suk KIM ; Sungchan PARK
Journal of Korean Medical Science 2018;33(40):e242-
BACKGROUND: To investigate the clinicopathological characteristics of urinary bladder tumors, a rare malignancy, in patients 20 years or younger. METHODS: Using a retrospective chart review among patients who received bladder surgery at 2 institutions between July 1996 and January 2013, we analyzed the clinicopathological characteristics of urinary bladder tumors in 21 pediatric patients (male:female = 4.25:1.00; mean age, 12.1 years). RESULTS: Pathology revealed 9 urothelial tumors, 6 rhabdomyosarcomas, 1 low-grade leiomyosarcoma, 1 large cell neuroendocrine carcinoma, 1 inflammatory myofibroblastic tumor, and 3 cases of chronic inflammation without tumors (including 1 xanthogranulomatous inflammation). Urothelial tumors (mean patient age, 16.0 years) were benign or low-grade; and only transurethral resection of the bladder tumor was necessary for treatment. Patients with rhabdomyosarcomas (mean age, 5 years) underwent radiotherapy (if unresectable) or transurethral resection of the bladder tumor (if resectable), after chemotherapy. Of these patients, 2 underwent radical cystectomy, with the remaining patients not receiving a cystectomy. With the exception of one patient, all patients are currently alive and recurrence-free. CONCLUSION: Urothelial tumors were the most commonly found pediatric bladder tumor, with embryonal rhabdomyosarcoma being the second most common. Urothelial tumors are common in relatively older age. Since urothelial tumors in children typically have a good prognosis and rarely recur, transurethral resection of the bladder tumor is the treatment of choice. Rhabdomyosarcomas are common in younger patients. Since rhabdomyosarcoma is generally chemosensitive, chemotherapy and radiotherapy are the treatment of choice for bladder preservation in these patients.
Carcinoma, Neuroendocrine
;
Child
;
Cystectomy
;
Drug Therapy
;
Humans
;
Inflammation
;
Leiomyosarcoma
;
Myofibroblasts
;
Pathology
;
Prognosis
;
Radiotherapy
;
Retrospective Studies
;
Rhabdomyosarcoma
;
Rhabdomyosarcoma, Embryonal
;
Urinary Bladder Neoplasms
;
Urinary Bladder*
6.Pathomechanisms of pericyte-myofibroblast transition in kidney and interventional effects of Chinese herbal medicine.
Ying-Lu LIU ; Ge SHI ; Dong-Wei CAO ; Yi-Gang WAN ; Wei WU ; Yue TU ; Bu-Hui LIU ; Wen-Bei HAN ; Jian YAO
China Journal of Chinese Materia Medica 2018;43(21):4192-4197
In the kidney, pericyte is the major source of myofibroblast (MyoF) in renal interstitium. It is reported that pericyte-myofibroblast transition(PMT)is one of the important pathomechanisms of renal interstitial fibrosis(RIF). Among them, the main reasons for promoting RIF formation include pericyte recruitment, activation and isolation, as well as the lack of pericyte-derived erythropoietin. During the PMT startup process, pericyte activation and its separation from microvessels are controlled by multiple signal transduction pathways, such as transforming growth factor-β(TGF-β)pathway, vascular endothelial growth factor receptor (VEGFR) pathway and platelet derived growth factor receptor (PDGFR) pathway;Blocking of these signaling pathways can not only inhibit PMT, but also suppress renal capillaries reduction and further alleviate RIF. In clinic, many traditional Chinese medicine compound prescriptions, single traditional Chinese herbal medicine (CHM) and their extracts have the clear effects in alleviating RIF, and some of their intervention actions may be related to pericyte and its PMT. Therefore, the studies on PMT and its drug intervention will become the main development direction in the research field of anti-organ fibrosis by CHM.
Drugs, Chinese Herbal
;
pharmacology
;
Fibrosis
;
Humans
;
Kidney
;
cytology
;
drug effects
;
pathology
;
Myofibroblasts
;
cytology
;
Pericytes
;
cytology
;
Receptors, Platelet-Derived Growth Factor
;
metabolism
;
Signal Transduction
;
Vascular Endothelial Growth Factor A
;
metabolism
7.MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis.
Surajit PATHAK ; Alessia Rosaria GRILLO ; Melania SCARPA ; Paola BRUN ; Renata D'INCA ; Laura NAI ; Antara BANERJEE ; Donatella CAVALLO ; Luisa BARZON ; Giorgio PALU ; Giacomo Carlo STURNIOLO ; Andrea BUDA ; Ignazio CASTAGLIUOLO
Experimental & Molecular Medicine 2015;47(5):e164-
Abnormal levels of microRNA (miR)-155, which regulate inflammation and immune responses, have been demonstrated in the colonic mucosa of patients with inflammatory bowel diseases (IBD), although its role in disease pathophysiology is unknown. We investigated the role of miR-155 in the acquisition and maintenance of an activated phenotype by intestinal myofibroblasts (IMF), a key cell population contributing to mucosal damage in IBD. IMF were isolated from colonic biopsies of healthy controls, ulcerative colitis (UC) and Crohn's disease (CD) patients. MiR-155 in IMF was quantified by quantitative reverse transcription-PCR in basal condition and following exposure to TNF-alpha, interleukin (IL)-1beta, lipopolysaccharide (LPS) or TGF-beta1. The effects of miR-155 mimic or inhibitor transfection on cytokine release and suppressor of cytokine signaling 1 (SOCS1) expression were assessed by enzyme-linked immunosorbent assay and western blot, respectively. Regulation of the target gene SOCS1 expression by miR-155 was assessed using luciferase reporter construct. We found that miR-155 was significantly upregulated in UC as compared with control- and CD-derived IMF. Moreover, TNF-alpha and LPS, but not TGF-beta1 and IL-1beta, significantly increased miR-155 expression in IMF. Ectopic expression of miR-155 in control IMF augmented cytokines release, whereas it downregulated SOCS1 expression. MiR-155 knockdown in UC-IMF reduced cytokine production and enhanced SOCS1 expression. Luciferase reporter assay demonstrated that miR-155 directly targets SOCS1. Moreover, silencing of SOCS1 in control IMF significantly increased IL-6 and IL-8 release. In all, our data suggest that inflammatory mediators induce miR-155 expression in IMF of patients with UC. By downregulating the expression of SOCS1, miR-155 wires IMF inflammatory phenotype.
Adult
;
Aged
;
Cells, Cultured
;
Colitis, Ulcerative/*genetics/immunology/*pathology
;
Cytokines/immunology
;
Female
;
*Gene Expression Regulation
;
Humans
;
Intestinal Mucosa/immunology/metabolism/pathology
;
Male
;
MicroRNAs/*genetics
;
Middle Aged
;
Myofibroblasts/immunology/metabolism/*pathology
;
Suppressor of Cytokine Signaling Proteins/*genetics
;
Tumor Necrosis Factor-alpha/immunology
;
Up-Regulation
;
Young Adult
8.MiR-155 modulates the inflammatory phenotype of intestinal myofibroblasts by targeting SOCS1 in ulcerative colitis.
Surajit PATHAK ; Alessia Rosaria GRILLO ; Melania SCARPA ; Paola BRUN ; Renata D'INCA ; Laura NAI ; Antara BANERJEE ; Donatella CAVALLO ; Luisa BARZON ; Giorgio PALU ; Giacomo Carlo STURNIOLO ; Andrea BUDA ; Ignazio CASTAGLIUOLO
Experimental & Molecular Medicine 2015;47(5):e164-
Abnormal levels of microRNA (miR)-155, which regulate inflammation and immune responses, have been demonstrated in the colonic mucosa of patients with inflammatory bowel diseases (IBD), although its role in disease pathophysiology is unknown. We investigated the role of miR-155 in the acquisition and maintenance of an activated phenotype by intestinal myofibroblasts (IMF), a key cell population contributing to mucosal damage in IBD. IMF were isolated from colonic biopsies of healthy controls, ulcerative colitis (UC) and Crohn's disease (CD) patients. MiR-155 in IMF was quantified by quantitative reverse transcription-PCR in basal condition and following exposure to TNF-alpha, interleukin (IL)-1beta, lipopolysaccharide (LPS) or TGF-beta1. The effects of miR-155 mimic or inhibitor transfection on cytokine release and suppressor of cytokine signaling 1 (SOCS1) expression were assessed by enzyme-linked immunosorbent assay and western blot, respectively. Regulation of the target gene SOCS1 expression by miR-155 was assessed using luciferase reporter construct. We found that miR-155 was significantly upregulated in UC as compared with control- and CD-derived IMF. Moreover, TNF-alpha and LPS, but not TGF-beta1 and IL-1beta, significantly increased miR-155 expression in IMF. Ectopic expression of miR-155 in control IMF augmented cytokines release, whereas it downregulated SOCS1 expression. MiR-155 knockdown in UC-IMF reduced cytokine production and enhanced SOCS1 expression. Luciferase reporter assay demonstrated that miR-155 directly targets SOCS1. Moreover, silencing of SOCS1 in control IMF significantly increased IL-6 and IL-8 release. In all, our data suggest that inflammatory mediators induce miR-155 expression in IMF of patients with UC. By downregulating the expression of SOCS1, miR-155 wires IMF inflammatory phenotype.
Adult
;
Aged
;
Cells, Cultured
;
Colitis, Ulcerative/*genetics/immunology/*pathology
;
Cytokines/immunology
;
Female
;
*Gene Expression Regulation
;
Humans
;
Intestinal Mucosa/immunology/metabolism/pathology
;
Male
;
MicroRNAs/*genetics
;
Middle Aged
;
Myofibroblasts/immunology/metabolism/*pathology
;
Suppressor of Cytokine Signaling Proteins/*genetics
;
Tumor Necrosis Factor-alpha/immunology
;
Up-Regulation
;
Young Adult
9.Inhibition effect of N-acetyl-seryl-aspartyl-lysyl-proline on myofibroblast differentiation by regulating acetylated tubulin α in silicotic rat model.
Shifeng LI ; Xuemin GAO ; Dingjie XU ; Xiaojun WANG ; Yan LIU ; Lijuan ZHANG ; Haijing DENG ; Zhongqiu WEI ; Jingrui TIAN ; Hong XU ; Fang YANG ; E-mail: FANGYANG1955@163.COM.
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(11):816-821
OBJECTIVETo explore the inhibition effect and mechanism of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP)on myofibroblast differentiation via regulating acetylated tubulin α (Ac-Tub α)in vivo and in vitro.
METHODSSilicotic model were made by SiO2 douched and divided into 6 groups as follows: control (4w, 8w)group, silicotic model (4w, 8w)group and post-or pre-treatment by Ac-SDKP group. Pulmonary fibroblasts were divided into 5 groups: (1) control; (2) Ang II; (3) Ang II+Ac-SDKP; (4) Ang II+Valsartan; (5) Ang II+TCS histone deacetylase (HDAC)6 20b. The localization of Ac-Tub α and α-smooth muscle actin (SMA) were observed by immunohistochemical (IHC) and immunofluorescence staining. The protein levels of Ac-Tub α, α-SMA, collagen type I (col I) and HDAC6 were measured by western blot.
RESULTSIn silicotic nodules and interstitial fibrosis area, positive expression of α-SMA, a classical marker of myofibroblast, was ob-served by IHC, accompanied with absence expression of Ac-Tub α. Furthermore, Ac-SDKP post-treatment could attenuate the levels of col I, α-SMA and HDAC6 to 48.39%, 52.63% and 70.18% compared with the silicotic 8w group respectively. And in Ac-SDKP pre-treatment group, compared with the silicotic 8w group, these protein levels were decreased to 32.26%, 64.91% and 54.39% respectively (P<0.05). The up-regulation of Ac-Tub α was found in Ac-SDKP post-and pre-treatment and increased to 3.00 and 2.90 folds compared with the silicotic 8w group. Compared with control group, the levels of α-SMA, HDAC6 and col I in Ang II group were up-regulated to 1.66, 3.56 and 4.00 folds accompanied with down-regulation of Ac-Tub by 44.44% (P<0.05). Pre-treatment with Valsartan, TCS HDAC6 20b or Ac-SDKP could inhibited all this changes induced by Ang II in vitro.
CONCLUSIONAc-SDKP can inhibit the myofibroblast differentiation and collagen deposition via sup-press HDAC6 and up-regulate the expression of Ac-Tub α in vivo and in vitro.
Actins ; metabolism ; Animals ; Cell Differentiation ; drug effects ; Collagen Type I ; metabolism ; Disease Models, Animal ; Fibroblasts ; cytology ; Lung ; pathology ; Myofibroblasts ; cytology ; drug effects ; Oligopeptides ; pharmacology ; Rats ; Silicon Dioxide ; toxicity ; Silicosis ; drug therapy ; Tubulin ; metabolism
10.Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis.
Xiaokang LI ; Hui ZHAO ; Chunxiao QI ; Yang ZENG ; Feng XU ; Yanan DU
Protein & Cell 2015;6(10):735-745
The onset of cardiac fibrosis post myocardial infarction greatly impairs the function of heart. Recent advances of cell transplantation showed great benefits to restore myocardial function, among which the mesenchymal stem cells (MSCs) has gained much attention. However, the underlying cellular mechanisms of MSC therapy are still not fully understood. Although paracrine effects of MSCs on residual cardiomyocytes have been discussed, the amelioration of fibrosis was rarely studied as the hostile environment cannot support the survival of most cell populations and impairs the diffusion of soluble factors. Here in order to decipher the potential mechanism of MSC therapy for cardiac fibrosis, we investigated the interplay between MSCs and cardiac myofibroblasts (mFBs) using interactive co-culture method, with comparison to paracrine approaches, namely treatment by MSC conditioned medium and gap co-culture method. Various fibrotic features of mFBs were analyzed and the most prominent anti-fibrosis effects were always obtained using direct co-culture that allowed cell-to-cell contacts. Hepatocyte growth factor (HGF), a well-known anti-fibrosis factor, was demonstrated to be a major contributor for MSCs' anti-fibrosis function. Moreover, physical contacts and tube-like structures between MSCs and mFBs were observed by live cell imaging and TEM which demonstrate the direct cellular interactions.
Adipose Tissue
;
cytology
;
Animals
;
Cell Communication
;
Cell Differentiation
;
Cell Movement
;
Cell Survival
;
Coculture Techniques
;
Fibrosis
;
Male
;
Mesenchymal Stem Cells
;
cytology
;
Myocardium
;
pathology
;
Myofibroblasts
;
cytology
;
Phenotype
;
Rats
;
Rats, Sprague-Dawley

Result Analysis
Print
Save
E-mail