1.Single-cell analysis reveals an Angpt4-initiated EPDC-EC-CM cellular coordination cascade during heart regeneration.
Zekai WU ; Yuan SHI ; Yueli CUI ; Xin XING ; Liya ZHANG ; Da LIU ; Yutian ZHANG ; Ji DONG ; Li JIN ; Meijun PANG ; Rui-Ping XIAO ; Zuoyan ZHU ; Jing-Wei XIONG ; Xiangjun TONG ; Yan ZHANG ; Shiqiang WANG ; Fuchou TANG ; Bo ZHANG
Protein & Cell 2023;14(5):350-368
Mammals exhibit limited heart regeneration ability, which can lead to heart failure after myocardial infarction. In contrast, zebrafish exhibit remarkable cardiac regeneration capacity. Several cell types and signaling pathways have been reported to participate in this process. However, a comprehensive analysis of how different cells and signals interact and coordinate to regulate cardiac regeneration is unavailable. We collected major cardiac cell types from zebrafish and performed high-precision single-cell transcriptome analyses during both development and post-injury regeneration. We revealed the cellular heterogeneity as well as the molecular progress of cardiomyocytes during these processes, and identified a subtype of atrial cardiomyocyte exhibiting a stem-like state which may transdifferentiate into ventricular cardiomyocytes during regeneration. Furthermore, we identified a regeneration-induced cell (RIC) population in the epicardium-derived cells (EPDC), and demonstrated Angiopoietin 4 (Angpt4) as a specific regulator of heart regeneration. angpt4 expression is specifically and transiently activated in RIC, which initiates a signaling cascade from EPDC to endocardium through the Tie2-MAPK pathway, and further induces activation of cathepsin K in cardiomyocytes through RA signaling. Loss of angpt4 leads to defects in scar tissue resolution and cardiomyocyte proliferation, while overexpression of angpt4 accelerates regeneration. Furthermore, we found that ANGPT4 could enhance proliferation of neonatal rat cardiomyocytes, and promote cardiac repair in mice after myocardial infarction, indicating that the function of Angpt4 is conserved in mammals. Our study provides a mechanistic understanding of heart regeneration at single-cell precision, identifies Angpt4 as a key regulator of cardiomyocyte proliferation and regeneration, and offers a novel therapeutic target for improved recovery after human heart injuries.
Humans
;
Mice
;
Rats
;
Cell Proliferation
;
Heart/physiology*
;
Mammals
;
Myocardial Infarction/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Pericardium/metabolism*
;
Single-Cell Analysis
;
Zebrafish/metabolism*
2.Progress in the Role of Mechanical Stimulus in Cardiac Development.
Ming-Hui XIE ; Wei-Hua QIAO ; Hong CAO ; Jia-Wei SHI ; Nian-Guo DONG
Acta Academiae Medicinae Sinicae 2022;44(1):164-172
Mechanical stimulus is critical to cardiovascular development during embryogenesis period.The mechanoreceptors of endocardial cells and cardiac myocytes may sense mechanical signals and initiate signal transduction that induce gene expression at a cellular level,and then translate molecular-level events into tissue-level deformations,thus guiding embryo development.This review summarizes the regulatory roles of mechanical signals in the early cardiac development including the formation of heart tube,looping,valve and septal morphogenesis,ventricular development and maturation.Further,we discuss the potential mechanical transduction mechanisms of platelet endothelial cell adhesion molecule 1-vascular endothelial-cadherin-vascular endothelial growth factor receptor 2 complex,primary cilia,ion channels,and other mechanical sensors that affect some cardiac malformations.
Animals
;
Heart/embryology*
;
Humans
;
Mechanotransduction, Cellular
;
Myocytes, Cardiac/physiology*
;
Vascular Endothelial Growth Factor A/metabolism*
3.Salvianolic Acid A Protects Neonatal Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Injury by Preserving Mitochondrial Function and Activating Akt/GSK-3β Signals.
Xue-Li LI ; Ji-Ping FAN ; Jian-Xun LIU ; Li-Na LIANG
Chinese journal of integrative medicine 2019;25(1):23-30
OBJECTIVE:
To investigate the effects of salvianolic acid A (SAA) on cardiomyocyte apoptosis and mitochondrial dysfunction in response to hypoxia/reoxygenation (H/R) injury and to determine whether the Akt signaling pathway might play a role.
METHODS:
An in vitro model of H/R injury was used to study outcomes on primary cultured neonatal rat cardiomyocytes. The cardiomyocytes were treated with 12.5, 25, 50 μg/mL SAA at the beginning of hypoxia and reoxygenation, respectively. Adenosine triphospate (ATP) and reactive oxygen species (ROS) levels were assayed. Cell apoptosis was evaluated by flow cytometry and the expression of cleaved-caspase 3, Bax and Bcl-2 were detected by Western blotting. The effects of SAA on mitochondrial dysfunction were examined by determining the mitochondrial membrane potential (△Ψm) and mitochondrial permeability transition pore (mPTP), followed by the phosphorylation of Akt (p-Akt) and GSK-3β (p-GSK-3β), which were measured by Western blotting.
RESULTS:
SAA significantly preserved ATP levels and reduced ROS production. Importantly, SAA markedly reduced the number of apoptotic cells and decreased cleaved-caspase 3 expression levels, while also reducing the ratio of Bax/Bcl-2. Furthermore, SAA prevented the loss of △Ψm and inhibited the activation of mPTP. Western blotting experiments further revealed that SAA significantly increased the expression of p-Akt and p-GSK-3β, and the increase in p-GSK-3β expression was attenuated after inhibition of the Akt signaling pathway with LY294002.
CONCLUSION
SAA has a protective effect on cardiomyocyte H/R injury; the underlying mechanism may be related to the preservation of mitochondrial function and the activation of the Akt/GSK-3β signaling pathway.
Adenosine Triphosphate
;
analysis
;
Animals
;
Animals, Newborn
;
Caffeic Acids
;
pharmacology
;
Cell Hypoxia
;
Cells, Cultured
;
Glycogen Synthase Kinase 3 beta
;
physiology
;
Lactates
;
pharmacology
;
Mitochondria, Heart
;
drug effects
;
physiology
;
Mitochondrial Membrane Transport Proteins
;
drug effects
;
Myocytes, Cardiac
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Signal Transduction
;
physiology
4.Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes.
Ying SHAO ; Jiadan WANG ; Danyan ZHU
Journal of Zhejiang University. Medical sciences 2019;48(1):65-74
OBJECTIVE:
To explore the expression, localization and regulatory effect on mitochondrial calcium signaling of Rictor in embryonic stem cell-derived cardiomyocytes (ESC-CMs).
METHODS:
Classical embryonic stem cell cardiomyogenesis model was used for differentiation of mouse embryonic stem cells into cardiomyocytes. The location of Rictor in ESC-CMs was investigated by immunofluorescence and Western blot. The expression of Rictor in mouse embryonic stem cells was interfered with lentiviral technology, then the superposition of mitochondria and endoplasmic reticulum (ER) in ESC-CMs was detected with immunofluorescence method; the cellular ultrastructure of ESC-CMs was observed by transmission electron microscope; the mitochondrial calcium transients of ESC-CMs was detected by living cell workstation;immunoprecipitation was used to detect the interaction between 1,5,5-trisphosphate receptor (IP3 receptor, IP3R), glucose-regulated protein 75 (Grp75) and voltage-dependent anion channel 1 (VDAC1) in mitochondrial outer membrane; the expression of mitochondrial fusion protein (mitonusin-2, Mfn2) was detected by Western blot.
RESULTS:
Rictor was mainly localized in the endoplasmic reticulum and mitochondrial-endoplasmic reticulum membrane (MAM) in ESC-CMs. Immunofluorescence results showed that Rictor was highly overlapped with ER and mitochondria in ESC-CMs. After mitochondrial and ER were labeled with Mito-Tracker Red and ER-Tracker Green, it was demonstrated that the mitochondria of the myocardial cells in the Rictor group were scattered, and the superimposition rate of mitochondria and ER was lower than that of the negative control group (<0.01). The MAM structures were decreased in ESC-CMs after knockdown of Rictor. The results of the living cell workstation showed that the amplitude of mitochondrial calcium transients by ATP stimulation in ESC-CMs was decreased after knockdown of Rictor (<0.01). The results of co-immunoprecipitation showed that the interaction between IP3R, Grp75 and VDAC1 in the MAM structure of the cardiomyocytes in the Rictor group was significantly attenuated (<0.01); the results of Western blot showed that the expression of Mfn2 protein was significantly decreased (<0.01).
CONCLUSIONS
Using lentiviral technology to interfere Rictor expression in mouse embryonic stem cells, the release of calcium from the endoplasmic reticulum to mitochondria in ESC-CMs decreases, which may be affected by reducing the interaction of IP3R, Grp75, VDAC1 and decreasing the expression of Mfn2, leading to the damage of MAM structure.
Animals
;
Calcium Signaling
;
genetics
;
Gene Expression Regulation
;
genetics
;
Gene Knockdown Techniques
;
Mice
;
Mitochondria
;
physiology
;
Mouse Embryonic Stem Cells
;
Myocytes, Cardiac
;
physiology
;
Protein Transport
;
Rapamycin-Insensitive Companion of mTOR Protein
;
genetics
;
metabolism
5.Effects of interval training on calcium transient and contractile function of single ventricular myocyte in myocardial infarction adult rats.
Wen Yan BO ; Da Gang LI ; Zhen Jun TIAN
Chinese Journal of Applied Physiology 2019;35(2):121-125
OBJECTIVE:
To investigate the effects of interval training on calcium transient and contractile function in ischemic ventricular myocytes of rats with myocardial infarction and their synchronization.
METHODS:
Twenty-four male sprague-dawley rats in three years old, were randomly divided into three groups (n=8): sham-operated group(S), sedentary MI group(MI) and MI with interval training group (ME). The MI model was established by ligation of the left anterior descending coronary artery. The rats in ME group started training 1 week after MI operation. The S model was established by threading only without ligation. ME model took one week adaptive training, 10 m/min and 30 min/d, then took subsequently 8-week aerobic interval training: 10 min×10 m/min, then reran the rats with 2 intensities 15 m/min×6 min and 25 m/min×4 min, 1 h/d, 5 d/week. After training 24 hours, the cardiomyocytes of all groups were isolated by using the Langendorff fusion system. The contractile function and calcium transient of single ventricular myocyte in myocardial infarction adult rats were detected by IonOptix. Calcium transients were measured as [Ca] amplitude, departure velocity, ratio, TTB50%, TTP and TTP50%, return velocity and ratio amplitude. PTA, SL, ±dl/dtmax and SL shortening% were tested to evaluate contractility.
RESULTS:
Compared with S, the levels of [Ca] amplitude, departure velocity, ratio amplitude and return velocity, SL shortening%, PTA and ±dl/dtmax of MI were decreased(P<0.01), the levels of TTP, TTP50% and TTB50% of MI were increased(P<0.01); Compared with MI, the levels of departure velocity, ratio amplitude, return velocity and [Ca] amplitude of ME were increased(P<0.01), the levels of TTB50%, TTP and TTP50% of ME were decreased(P<0.01, P<0.05). The levels of SL shortening%, PTA and ±dl/dtmax of ME were increased(P<0.01, P<0.05).
CONCLUSION
Interval training can improve calcium transient and contractile function of single ventricular myocyte in myocardial infarction adult rats.
Animals
;
Calcium
;
physiology
;
Male
;
Myocardial Contraction
;
Myocardial Infarction
;
pathology
;
Myocytes, Cardiac
;
physiology
;
Physical Conditioning, Animal
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
6.miR-494-3p reduces insulin sensitivity in diabetic cardiomyocytes by down-regulation of insulin receptor substrate 1.
Jie WU ; Xing-Hua QIN ; Zuo-Xu HOU ; Zi-Hao FU ; Guo-Hua LI ; Hong-Yan YANG ; Xing ZHANG ; Feng GAO
Acta Physiologica Sinica 2019;71(2):271-278
More and more evidence suggests that microRNA is widely involved in the regulation of cardiovascular function. Our preliminary experiment showed that miR-494-3p was increased in heart of diabetic rats, and miR-494-3p was reported to be related to metabolism such as obesity and exercise. Therefore, this study was aimed to explore the role of miR-494-3p in diabetic myocardial insulin sensitivity and the related mechanism. The diabetic rat model was induced by high fat diet (45 kcal% fat, 12 weeks) combined with streptozotocin (STZ, 30 mg/kg), and cardiac tissue RNA was extracted for qPCR. The results showed that the level of miR-494-3p was significantly up-regulated in the myocardium of diabetic rats compared with the control (P < 0.05). The level of miR-494-3p in H9c2 cells cultured in high glucose and high fat medium (HGHF) was significantly increased (P < 0.01) with the increase of sodium palmitate concentration, whereas down-regulation of miR-494-3p in HGHF treated cells led to an increase in insulin-stimulated glucose uptake (P < 0.01) and the ratio of p-Akt/Akt (P < 0.05). Over-expression of miR-494-3p in H9c2 cell line significantly inhibited insulin-stimulated glucose uptake and phosphorylation of Akt (P < 0.01). Bioinformatics combined with Western blotting experiments confirmed insulin receptor substrate 1 (IRS1) as a target molecule of miR-494-3p. These results suggest that miR-494-3p reduces insulin sensitivity in diabetic cardiomyocytes by down-regulating IRS1.
Animals
;
Diabetes Mellitus, Experimental
;
physiopathology
;
Down-Regulation
;
Insulin
;
Insulin Receptor Substrate Proteins
;
physiology
;
Insulin Resistance
;
MicroRNAs
;
genetics
;
Myocytes, Cardiac
;
physiology
;
Rats
7.Feasibility Analysis of Oxygen-Glucose Deprivation-Nutrition Resumption on H9c2 Cells Models of Myocardial Ischemia-Reperfusion Injury.
Gui-Zhen YANG ; Fu-Shan XUE ; Ya-Yang LIU ; Hui-Xian LI ; Qing LIU ; Xu LIAO
Chinese Medical Journal 2018;131(19):2277-2286
BackgroundOxygen-glucose deprivation-nutrition resumption (OGD-NR) models on H9c2 cells are commonly used in vitro models of simulated myocardial ischemia-reperfusion injury (MIRI), but no study has assessed whether these methods for establishing in vitro models can effectively imitate the characteristics of MIRI in vivo. This experiment was designed to analyze the feasibility of six OGD-NR models of MIRI.
MethodsBy searching the PubMed database using the keywords "myocardial reperfusion injury H9c2 cells," we obtained six commonly used OGD-NR in vitro models of MIRI performed on H9c2 cells from more than 400 published papers before January 30, 2017. For each model, control (C), simulated ischemia (SI), and simulated ischemia-reperfusion (SIR) groups were assigned, and cell morphology, lactate dehydrogenase (LDH) release, adenosine triphosphate (ATP) levels, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and inflammatory cytokines were examined to evaluate the characteristics of cell injury. Subsequently, a coculture system of cardiomyocyte-endothelial-macrophage was constructed. The coculture system was dealt with SI and SIR treatments to test the effect on cardiomyocytes survival.
ResultsFor models 1, 2, 3, 4, 5, and 6, SI treatment caused morphological damage to cells, and subsequent SIR treatment did not cause further morphological damage. In the models 1, 2, 3, 4, 5 and 6, LDH release was significantly higher in the SI groups than that in the C group (P < 0.05), and was significantly lower in the SIR groups than that in the SI groups (P < 0.05), except for no significant differences in the LDH release between C, SI and SIR groups in model 6 receiving a 3-h SI treatment. In models 1, 2, 3, 4, 5, and 6, compared with the C group, ATP levels of the SI groups significantly decreased (P < 0.05), ROS levels increased (P < 0.05), and MMP levels decreased (P < 0.05). Compared with the SI group, ATP level of the SIR groups was significantly increased (P < 0.05), and there was no significant ROS production, MMP collapse, and over inflammatory response in the SIR groups. In a coculture system of H9c2 cells-endothelial cells-macrophages, the proportion of viable H9c2 cells in the SIR groups was not reduced compared with the SI groups.
ConclusionAll the six OGD-NR models on H9c2 cells in this experiment can not imitate the characteristics of MIRI in vivo and are not suitable for MIRI-related study.
Apoptosis ; Glucose ; metabolism ; Humans ; Myocardial Reperfusion Injury ; physiopathology ; Myocytes, Cardiac ; physiology ; Oxygen ; metabolism
8.Cardiac Hypertrophy is Positively Regulated by MicroRNA‑24 in Rats
Juan GAO ; Min ZHU ; Rui-Feng LIU ; Jian-Shu ZHANG ; Ming XU
Chinese Medical Journal 2018;131(11):1333-1341
BackgroundMicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy.
MethodsTwelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance.
ResultsThe expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = -2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy.
ConclusionMiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression.
Animals ; Cardiomegaly ; genetics ; pathology ; Cell Cycle ; genetics ; physiology ; Cyclin-Dependent Kinase Inhibitor p27 ; genetics ; metabolism ; Male ; MicroRNAs ; genetics ; Myocardium ; metabolism ; Myocytes, Cardiac ; cytology ; metabolism ; Rats ; Rats, Sprague-Dawley
9.Role of mitochondrial permeability transition pore in mediating the inhibitory effect of gastrodin on oxidative stress in cardiac myocytes .
Xuechao HAN ; Jingman XU ; Sen XU ; Yahan SUN ; Mali HE ; Xiaodong LI ; Xinyu LI ; Jiayi PI ; Rui YU ; Wei TIAN
Journal of Southern Medical University 2018;38(11):1306-1311
OBJECTIVE:
To explore the role of mitochondrial permeability transition pore (mPTP) in mediating the protective effect of gastrodin against oxidative stress damage in H9c2 cardiac myocytes.
METHODS:
H9c2 cardiac myocytes were treated with HO, gastrodin, gastrodin+HO, cyclosporin A (CsA), or CsA+gas+HO group. MTT assay was used to detect the survival ratio of H9c2 cells, and flow cytometry with Annexin V-FITC/PI double staining was used to analyze the early apoptosis rate after the treatments. The concentration of ATP and level of reactive oxygen species (ROS) in the cells were detected using commercial kits. The mitochondrial membrane potential of the cells was detected with laser confocal microscopy. The expression of cytochrome C was detected with Western blotting, and the activity of caspase-3 was also assessed in the cells.
RESULTS:
Gastrodin pretreatment could prevent oxidative stress-induced reduction of mitochondrial membrane potential, and this effect was inhibited by the application of CsA. Gastrodin significantly lowered the levels of ROS and apoptosis-related factors in HO-exposed cells, and such effects were reversed by CsA. CsA significantly antagonized the protective effect of gastrodin against apoptosis in HO-exposed cells.
CONCLUSIONS
Gastrodin prevents oxidative stress-induced injury in H9c2 cells by inhibiting mPTP opening to reduce the cell apoptosis.
Adenosine Triphosphate
;
analysis
;
Apoptosis
;
drug effects
;
Benzyl Alcohols
;
antagonists & inhibitors
;
pharmacology
;
Caspase 3
;
analysis
;
Cell Line
;
Cell Survival
;
drug effects
;
Cyclosporine
;
pharmacology
;
Cytochromes c
;
analysis
;
Glucosides
;
antagonists & inhibitors
;
pharmacology
;
Humans
;
Hydrogen Peroxide
;
antagonists & inhibitors
;
pharmacology
;
Membrane Potential, Mitochondrial
;
drug effects
;
Mitochondrial Membrane Transport Proteins
;
physiology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Oxidative Stress
;
Reactive Oxygen Species
;
analysis
10.Regulatory roles of non-coding RNAs in cardiomyocyte differentiation.
Yumei WANG ; Luying PENG ; Li LI
Chinese Journal of Medical Genetics 2016;33(6):875-877
Heart is the first organ to function during mammalian embryogenesis. The differentiation of embryonic stem cells (ESCs) into cardiomyocyte is complex and dynamic, which involves 4 differentiation stages including ESCs, mesoderm, cardiac precursor, and terminal cardiomyocytes. Abnormal expression of certain genes can lead to congenital heart diseases during cardiomyocyte differentiation. Epigenetic regulation plays a crucial role on the switch of gene activation and deactivation during cardiomyocyte differentiation. Non-coding RNA, particularly microRNA and long non-coding RNA, may significantly influence gene expression. Exploring the regulatory roles of non-coding RNA in cardiomyocyte differentiation may contribute to the understanding of the functions of myocardial cells and mechanism of congenital heart diseases.
Animals
;
Cell Differentiation
;
genetics
;
Embryo, Mammalian
;
physiology
;
Embryonic Stem Cells
;
physiology
;
Epigenesis, Genetic
;
genetics
;
Humans
;
Myocytes, Cardiac
;
physiology
;
RNA, Long Noncoding
;
genetics

Result Analysis
Print
Save
E-mail