1.MiR -18a -5p aggravates homocysteine -induced myocardial injury via autophagy.
Juan YIN ; Longlong HU ; Xueling HAN ; Lu CHEN ; Lingling YU ; Yinhui LU
Journal of Central South University(Medical Sciences) 2023;48(1):24-33
OBJECTIVES:
Hyperhomocysteinaemia (Hcy) is an independent risk factor for cardiovascular and cerebrovascular diseases. MicroRNA (miR)-18a-5p is closely related to cardiovascular diseases. This study aims to investigate the effects of miR-18a-5p on homocysteine (Hcy)-induced myocardial cells injury.
METHODS:
H9c2 cells were transfected with miR-18a-5p mimic/miR-18a-5p mimic negative control (NC) or combined with Hcy for intervention, and untreated cells were set as a control group. The transfection efficiency was verified by real-time RT-PCR, and cell counting kit-8 (CCK-8) assay was used to determine cell viability. Flow cytometry was used to detect apoptosis and reactive oxygen species (ROS) levels. Western blotting was performed to measure the protein levels of microtubule-associated protein 1 light chain 3 (LC3)-I, LC3-II, Beclin1, p62, Bax, Bcl-2, and Notch2. Dual luciferase reporter assay was used to detect the interaction of miR-18a-5p with Notch2.
RESULTS:
Compared with the control, treatment with Hcy or transfection with miR-18a-5p mimic alone, or combined treatment with Hcy and miR-18a-5p mimic/miR-18a-5p mimic NC significantly reduced the H9c2 cell viability, promoted apoptosis and ROS production, up-regulated the expressions of Bax and Beclin, down-regulated the expressions of Bcl-2, p62, and Notch2, and increased the ratio of LC3-II/LC3-I (all P<0.05). Compared with the combined intervention of miR-18a-5p mimic NC and Hcy group, the above indexes were more significantly changed in the combined intervention of miR-18a-5p mimic and Hcy group, and the difference between the 2 groups was statistically significant (all P<0.05). There is a targeted binding between Notch2 and miR-18a-5p.
CONCLUSIONS
MiR-18a-5p could induce autophagy and apoptosis via increasing ROS production in cardiomyocytes, and aggravate Hcy-induced myocardial injury. Notch2 is a target of miR-18a-5p.
Apoptosis/genetics*
;
Autophagy/genetics*
;
bcl-2-Associated X Protein
;
MicroRNAs/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
Reactive Oxygen Species
;
Rats
;
Animals
;
Myocytes, Cardiac/drug effects*
;
Homocysteine/adverse effects*
;
Hyperhomocysteinemia
2.Sacubitril/valsartan attenuates left ventricular remodeling and improve cardiac function by upregulating apelin/APJ pathway in rats with heart failure.
Hong Zhi LIU ; Chuan Yu GAO ; Fang YUAN ; Yu XU ; Huan TIAN ; Su Qin WANG ; Peng Fei ZHANG ; Ya Nan SHI ; Jing Jing WEI
Chinese Journal of Cardiology 2022;50(7):690-697
Objective: To investigate the effect and mechanism of sacubitril/valsartan on left ventricular remodeling and cardiac function in rats with heart failure. Methods: A total of 46 SPF-grade male Wistar rats weighed 300-350 g were acclimatized to the laboratory for 7 days. Rats were then divided into 4 groups: the heart failure group (n=12, intraperitoneal injection of adriamycin hydrochloride 2.5 mg/kg once a week for 6 consecutive weeks, establishing a model of heart failure); heart failure+sacubitril/valsartan group (treatment group, n=12, intragastric administration with sacubitril/valsartan 1 week before the first injection of adriamycin, at a dose of 60 mg·kg-1·d-1 for 7 weeks); heart failure+sacubitril/valsartan+APJ antagonist F13A group (F13A group, n=12, adriamycin and sacubitril/valsartan, intraperitoneal injection of 100 μg·kg-1·d-1 APJ antagonist F13A for 7 weeks) and control group (n=10, intraperitoneal injection of equal volume of normal saline). One week after the last injection of adriamycin or saline, transthoracic echocardiography was performed to detect the cardiac structure and function, and then the rats were executed, blood and left ventricular specimens were obtained for further analysis. Hematoxylin-eosin staining and Masson trichrome staining were performed to analyze the left ventricular pathological change and myocardial fibrosis. TUNEL staining was performed to detect cardiomyocyte apoptosis. mRNA expression of left ventricular myocardial apelin and APJ was detected by RT-qRCR. ELISA was performed to detect plasma apelin-12 concentration. The protein expression of left ventricular myocardial apelin and APJ was detected by Western blot. Results: Seven rats survived in the heart failure group, 10 in the treatment group, and 8 in the F13A group. Echocardiography showed that the left ventricular end-diastolic diameter (LVEDD) and the left ventricular end-systolic diameter (LVESD) were higher (both P<0.05), while the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were lower in the heart failure group than in the control group (both P<0.05). Compared with the heart failure group, rats in the treatment group were featured with lower LVEDD and LVESD (both P<0.05), higher LVEF and LVFS (both P<0.05), these beneficial effects were reversed in rats assigned to F13A group (all P<0.05 vs. treatment group). The results of HE staining showed that the cardiomyocytes of rats in the control group were arranged neatly and densely structured, the cardiomyocytes in the heart failure group were arranged in disorder, distorted and the gap between cells was increased, the cardiomyocytes in the treatment group were slightly neat and dense, and cardiomyocytes in the F13A group were featured similarly as the heart failure group. Masson staining showed that there were small amount of collagen fibers in the left ventricular myocardial interstitium of the control group, while left ventricular myocardial fibrosis was significantly increased, and collagen volume fraction (CVF) was significantly higher in the heart failure group than that of the control group (P<0.05). Compared with the heart failure group, the left ventricular myocardial fibrosis and the CVF were reduced in the treatment group (both P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). TUNEL staining showed that the apoptosis index (AI) of cardiomyocytes in rats was higher in the heart failure group compared with the control group (P<0.05), which was reduced in the treatment group (P<0.05 vs. heart failure group), this effect again was reversed in the F13A group (P<0.05 vs. treatment group). The results of RT-qPCR and Western blot showed that the mRNA and protein levels of apelin and APJ in left ventricular myocardial tissue of rats were downregulated in heart failure group (all P<0.05) compared with the control group. Compared with the heart failure group, the mRNA and protein levels of apelin and APJ were upregulated in the treatment group (all P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). ELISA test showed that the plasma apelin concentration of rats was lower in the heart failure group compared with the control group (P<0.05); compared with the heart failure group, the plasma apelin concentration of rats was higher in the treatment group (P<0.05), this effect was reversed in the F13A group (P<0.05 vs. treatment group). Conclusion: Sacubitril/valsartan can partially reverse left ventricular remodeling and improve cardiac function in rats with heart failure through modulating Apelin/APJ pathways.
Aminobutyrates/pharmacology*
;
Animals
;
Apelin/metabolism*
;
Biphenyl Compounds
;
Collagen/metabolism*
;
Doxorubicin/pharmacology*
;
Fibrosis
;
Heart Failure/pathology*
;
Male
;
Myocytes, Cardiac/pathology*
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Wistar
;
Valsartan/pharmacology*
;
Ventricular Function, Left/drug effects*
;
Ventricular Remodeling
3.Resveratrol pretreatment improves mitochondrial function and alleviates myocardial ischemia-reperfusion injury by up-regulating mi R-20b-5p to inhibit STIM2.
Jing LI ; Qun-Jun DUAN ; Jian SHEN
China Journal of Chinese Materia Medica 2022;47(18):4987-4995
This study aimed to explore the mechanism of resveratrol(RES) pretreatment in improving mitochondrial function and alleviating myocardial ischemia-reperfusion(IR) injury by inhibiting stromal interaction molecule 2(STIM2) through microRNA-20 b-5 p(miR-20 b-5 p). Ninety rats were randomly assigned into sham group, IR group, IR+RES(50 mg·kg~(-1) RES) group, IR+RES+antagomir NC(50 mg·kg~(-1) RES+80 mg·kg~(-1) antagomir NC) group, and IR+RES+miR-20 b-5 p antagomir(50 mg·kg~(-1) RES+80 mg·kg~(-1) miR-20 b-5 p antagomir) group, with 18 rats/group. The IR rat model was established by ligation of the left anterior descending coronary artery. Two weeks before the operation, rats in the IR+RES group were intraperitoneally injected with 50 mg·kg~(-1) RES, and those in the sham and IR groups were injected with the same dose of normal saline, once a day. Ultrasonic instrument was used to detect the left ventricular internal diameter at end-diastole(LVIDd) and left ventricular internal diameter at end-systole(LVIDs) of rats in each group. The 2,3,5-triphenyte-trazoliumchloride(TTC) method and hematoxylin-eosin(HE) staining were employed to detect the myocardial infarction area and histopathology, respectively. Real-time quantitative PCR(qRT-PCR) was carried out to detect the expression of miR-20 b-5 p in myocardial tissue. Oxygen glucose deprivation/reoxygenation(OGD/R) was performed to establish an OGD/R model of H9 c2 cardiomyocytes. CCK-8 assay was employed to detect H9 c2 cell viability. H9 c2 cells were assigned into the control group, OGD/R group, OGD/R+RES group(25 μmol·L~(-1)), OGD/R+RES+inhibitor NC group, OGD/R+RES+miR-20 b-5 p inhibitor group, mimic NC group, miR-20 b-5 p mimic group, inhibitor NC group, and miR-20 b-5 p inhibitor group. Flow cytometry was employed to detect cell apoptosis. Western blot was employed to detect the expression of B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved-cysteine proteinase 3(cleaved-caspase-3), and STIM2 in cells. The mitochondrial membrane potential(MMP) assay kit, reactive oxygen species(ROS) assay kit, and adenosine triphosphate(ATP) assay kit were used to detect the MMP, ROS, and ATP levels, respectively. Dual luciferase reporter gene assay was adopted to verify the targeting relationship between miR-20 b-5 p and STIM2. Compared with the sham group, the modeling of IR increased the myocardial infarction area, LVIDd, LVIDs, and myocardial pathology and down-regulated the expression of miR-20 b-5 p(P<0.05). These changes were alleviated in the IR+RES group(P<0.05). The IR+RES+miR-20 b-5 p antagomir group had higher myocardial infarction area, LVIDd, LVIDs, and myocardial pathology and lower expression of miR-20 b-5 p than the IR+RES group(P<0.05). The OGD/R group had lower viability of H9 c2 cells than the control group(P<0.05) and the OGD/R+RES groups(25, 50, and 100 μmol·L~(-1))(P<0.05). Additionally, the OGD/R group had higher H9 c2 cell apoptosis rate, protein levels of Bax and cleaved caspase-3, and ROS level and lower Bcl-2 protein, MMP, and ATP levels than the control group(P<0.05) and the OGD/R+RES group(P<0.05). The OGD/R+RES+miR-20 b-5 p inhibitor group had higher H9 c2 cell apoptosis rate, protein levels of Bax and cleaved-caspase 3, and ROS level and lower Bcl-2 protein, MMP, and ATP levels than the OGD/R+RES group(P<0.05). miR-20 b-5 p had a targeting relationship with STIM2. The expression of STIM2 was lower in the miR-20 b-5 p mimic group than in the mimic NC group(P<0.05) and lower in the inhibitor NC group than in the miR-20 b-5 p inhibitor group(P<0.05). RES pretreatment can inhibit the expression of STIM2 by promoting the expression of miR-20 b-5 p, thereby improving the function of mitochondria and alleviating myocardial IR damage.
Animals
;
Rats
;
Adenosine Triphosphate
;
Antagomirs/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Glucose/metabolism*
;
MicroRNAs/metabolism*
;
Mitochondria, Heart/drug effects*
;
Myocardial Infarction/drug therapy*
;
Myocardial Reperfusion Injury/drug therapy*
;
Myocytes, Cardiac
;
Oxygen/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism*
;
Resveratrol/therapeutic use*
;
Stromal Interaction Molecule 2/metabolism*
4.Melatonin protects against myocardial ischemia-reperfusion injury by inhibiting contracture in isolated rat hearts.
Lingheng KONG ; Na SUN ; Lanlan WEI ; Lijun ZHANG ; Yulong CHEN ; Li CHANG ; Xingli SU
Journal of Zhejiang University. Medical sciences 2020;40(7):958-964
OBJECTIVE:
To investigate the protective effect of melatonin against myocardial ischemia reperfusion (IR) injury in isolated rat hearts and explore the underlying mechanisms.
METHODS:
The isolated hearts from 40 male SD rats were randomly divided into 4 groups (=10): the control group, where the hearts were perfused with KH solution for 175 min; IR group, where the hearts were subjected to global ischemia for 45 min followed by reperfusion for 120 min; IR+melatonin (Mel+IR) group, where melatonin (5 μmol/L) was administered to the hearts 1 min before ischemia and during the first 5 min of reperfusion, followed by 115 min of reperfusion; and IR+2, 3-butanedione monoxime (IR+BDM) group, where the hearts were treated with BDM (20 mmol/L) in the same manner as melatonin treatment. Myocardial injury in the isolated hearts was assessed based on myocardial injury area, caspase-3 activity, and expressions of cytochrome C and cleaved caspase-3 proteins. Cardiac contracture was assessed using HE staining and by detecting lactate dehydrogenase (LDH) activity and the content of cardiac troponin I (cTnI) in the coronary outflow, measurement of left ventricular end-diastolic pressure (LVEDP) and electron microscopy. The content of ATP in the cardiac tissue was also determined.
RESULTS:
Compared with those in the control group, the isolated hearts in IR group showed significantly larger myocardial injury area and higher caspase-3 activity and the protein expressions of cytochrome C and cleaved caspase-3 with significantly increased LDH activity and cTnI content in the coronary outflow and elevated LVEDP at the end of reperfusion; HE staining showed obvious fractures of the myocardial fibers and the content of ATP was significantly decreased in the cardiac tissue; electron microscopy revealed the development of contraction bands. In the isolated hearts with IR, treatment with Mel or BDM significantly reduced the myocardial injury area, caspase-3 activity, and protein expressions of cytochrome C and cleaved caspase-3, obviously inhibited LDH activity, lowered the content of cTnI and LVEDP, reduced myocardial fiber fracture, and increased ATP content in the cardiac tissue. Both Mel and BDM inhibited the formation of contraction bands in the isolated hearts with IR injury.
CONCLUSIONS
Mel can alleviate myocardial IR injury in isolated rat hearts by inhibiting cardiac contracture, the mechanism of which may involve the upregulation of ATP in the cardiac myocytes to lessen the tear of membrane and reduce cell content leakage.
Animals
;
Heart
;
drug effects
;
Male
;
Melatonin
;
pharmacology
;
therapeutic use
;
Muscle Contraction
;
drug effects
;
Myocardial Reperfusion Injury
;
drug therapy
;
Myocytes, Cardiac
;
drug effects
;
Rats
;
Rats, Sprague-Dawley
5.Aconitine ameliorates cardiomyocyte hypertrophy induced by angiotensin Ⅱ.
Ning-Ning WANG ; Jia WANG ; Hong-Ling TAN ; Yu-Guang WANG ; Yue GAO ; Zeng-Chun MA
China Journal of Chinese Materia Medica 2019;44(8):1642-1647
This paper was aimed to investigate the inhibitory effect of aconitine(AC) on angiotensin Ⅱ(Ang Ⅱ)-induced H9 c2 cell hypertrophy and explore its mechanism of action. The model of hypertrophy was induced by Ang Ⅱ(1×10-6 mol·L-1),and cardiomyocytes were incubated with different concentrations of AC. Western blot was used to quantify the protein expression levels of atrial natriuretic peptide(ANP),brain natriuretic peptide(BNP),β-myosin heavy chain(β-MHC),and α-smooth muscle actin(α-SMA). Real-time quantitative PCR(qRT-PCR) was used to quantify the mRNA expression levels of cardiac hypertrophic markers ANP,BNP and β-MHC. In addition,the fluorescence intensity of the F-actin marker,an important component of myofibrils,was detected by using laser confocal microscope. AC could significantly reverse the increase of total protein content in H9 c2 cells induced by Ang Ⅱ; qRT-PCR results showed that AC could significantly inhibit the ANP,BNP and β-MHC mRNA up-regulation induced by AngⅡ. Western blot results showed that AC could significantly inhibit the ANP,BNP and β-MHC protein up-regulation induced by AngⅡ. In addition,F-actin expression induced by Ang Ⅱ could be inhibited by AC,and multiple indicators of cardiomyocyte hypertrophy induced by Ang Ⅱ could be down-regulated,indicating that AC may inhibit cardiac hypertrophy by inhibiting the expression of hypertrophic factors,providing new clues for exploring the cardiovascular protection of AC.
Aconitine
;
pharmacology
;
Actins
;
metabolism
;
Angiotensin II
;
Atrial Natriuretic Factor
;
metabolism
;
Cardiac Myosins
;
metabolism
;
Cardiomegaly
;
Cells, Cultured
;
Humans
;
Hypertrophy
;
Myocytes, Cardiac
;
drug effects
;
Myosin Heavy Chains
;
metabolism
;
Natriuretic Peptide, Brain
;
metabolism
6.Zhenwu Decoction delays ventricular hypertrophy in rats with uremic cardiomyopathy.
Jun LAI ; Yingzhi WU ; Liwei HANG ; Akindavyi GAEL ; Ting DENG ; Quanneng YAN ; Qiang FU ; Zhiliang LI
Journal of Southern Medical University 2019;39(1):113-119
OBJECTIVE:
To investigate the inhibitory effect of Zhenwu Decoction on ventricular hypertrophy in rats with uremic cardiomyopathy and explore the mechanism.
METHODS:
Cardiocytes isolated from suckling rats were divided into control group and indoxyl sulfate (IS) group, and the protein synthesis was assayed with [H]- leucine incorporation and cellular protein expressions were detected using Western blotting. Fifty SD rats were randomly divided into sham operation group, model group, and low- and high-dose Zhenwu Decoction treatment groups, and except for those in the sham operation group, all the rats underwent 5/6 nephrectomy. Four weeks after the operation, the rats in low- and high-dose treatment groups were given Zhenwu Decoction gavage at the dose of 4.5 g/kg and 13.5 g/kg, respectively; the rats in the sham-operated and model groups were given an equal volume of distilled water. After 4 weeks of treatment, serum levels of IS were determined, and cardiac and ventricular mass indexes were measured in the rats; cardiac ultrasound was performed and Western blotting was used to measure the expressions of BNP, p-ERK1/2, p-p38 and p-JNK in the myocardium.
RESULTS:
Rat cardiomyocytes treated with IS showed significantly enhanced protein synthesis and increased expression levels of BNP, p-erk1/2, and p-p38 as compared with the control cells ( < 0.01), but the expression of p-jnk was comparable between the two groups. In the animal experiment, the rats in the model group showed significantly increased serum creatinine (SCr) and urea nitrogen (BUN) levels, 24-h urine protein (24 hUpro), plasma IS level, left ventricular mass index (LVMI) and whole heart mass index (HMI) compared with those in the sham group ( < 0.01); Both LVESD and LVEDD were significantly reduced and LVAWS, LVAWD, LVPWS and LVPWD were significantly increased in the model rat, which also presented with obvious cardiomyocyte hypertrophy and increased myocardial expressions of BNP, p-ERK1/2, p-p38 and p-jnk ( < 0.01). Compared with the rats in the model group, the rats treated with low-dose and high-dose Zhenwu Decoction had significantly lowered levels of SCr, BUN, 24 hUpro and IS ( < 0.05) and decreased LVMI and HMI; LVESD, LVEDD, LVPWS, LVAWS, and LVAWD were improved more obviously in the high-dose group, and the myocardial expressions of BNP, p-ERK1/2, p-p38 and p-JNK was significantly downregulated after the treatment.
CONCLUSIONS
Zhenwu Decoctin can reduce plasma IS levels and inhibit ventricular hypertrophy to delay ventricular remodeling in rats with uremic cardiomyopathy.
Animals
;
Blood Urea Nitrogen
;
Cardiomegaly
;
prevention & control
;
Cardiomyopathies
;
complications
;
Creatinine
;
blood
;
Drugs, Chinese Herbal
;
pharmacology
;
Heart Ventricles
;
Indican
;
blood
;
pharmacology
;
Myocytes, Cardiac
;
drug effects
;
metabolism
;
Nephrectomy
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
7.Astragaloside Ⅳ regulates Nrf2/Bach1/HO-1 signaling pathway and inhibits H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation.
Ping YANG ; Yu-Ping ZHOU ; Xiu-Chun CHANG ; Feng WANG ; Gao-Wen LI
China Journal of Chinese Materia Medica 2019;44(11):2331-2337
Astragaloside Ⅳ(AS-Ⅳ) has protective effects against ischemia-reperfusion injury(IRI), but its mechanism of action has not yet been determined. This study aims to investigate the protective effects and mechanism of AS-Ⅳ on H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation(H/R). The H/R model of myocardial cells was established by hypoxic culture for 12 hours and then reoxygenation culture for 8 hours. After AS-Ⅳ treatment, cell viability, the reactive oxygen species(ROS) levels, as well as the content or activity of superoxide dismutase(SOD), malondialdehyde(MDA), interleukin 6(IL-6), and tumor necrosis factor alpha(TNF-α), were measured to evaluate the effect of AS-Ⅳ treatment. The effect of AS-Ⅳ on HO-1 protein expression and nuclear Nrf2 and Bach1 protein expression was determined by Western blot. Finally, siRNA was used to knock down HO-1 gene expression to observe its reversal effect on AS-Ⅳ intervention. The results showed that as compared with the H/R model group, the cell viability was significantly increased(P<0.01), ROS level in the cells, MDA, hs-CRP and TNF-α in cell supernatant and nuclear protein Bach1 expression in the cells were significantly decreased(P<0.01), while SOD content, HO-1 protein expression in cells and expression of nuclear protein Nrf2 were significantly increased(P<0.01) in H/R+AS-Ⅳ group. However, pre-transfection of HO-1 siRNA into H9c2 cells by liposome could partly reverse the above effects of AS-Ⅳ after knocking down the expression of HO-1. This study suggests that AS-Ⅳ has significant protective effect on H/R injury of H9c2 cardiomyocytes, and Nrf2/Bach1/HO-1 signaling pathway may be a key signaling pathway for the effect.
Apoptosis
;
Basic-Leucine Zipper Transcription Factors
;
metabolism
;
Cell Hypoxia
;
Cells, Cultured
;
Heme Oxygenase-1
;
metabolism
;
Humans
;
Myocytes, Cardiac
;
drug effects
;
NF-E2-Related Factor 2
;
metabolism
;
Saponins
;
pharmacology
;
Signal Transduction
;
Triterpenes
;
pharmacology
8.Ophiopogonin D protects cardiomyocytes against ophiopogonin D'-induced injury through suppressing endoplasmic reticulum stress.
Jia WANG ; Ning-Ning WANG ; Yun-Xuan GE ; Hong-Ling TAN ; Zeng-Chun MA ; Yu-Guang WANG ; Yue GAO
China Journal of Chinese Materia Medica 2019;44(9):1876-1881
This study is aimed to investigate the intervention effect and possible mechanism of ophiopogonin D( OPD) in protecting cardiomyocytes against ophiopogonin D'( OPD')-induced injury,and provide reference for further research on toxicity difference of saponins from ophiopogonins. CCK-8 assay was used to evaluate the effect of OPD and OPD' on cell viability. The effect of OPD on OPD'-induced cell apoptosis was measured by flow cytometry. Morphologies of endoplasmic reticulum were observed by endoplasmic reticulum fluorescent probe. PERK,ATF-4,Bip and CHOP mRNA levels were detected by Real-time quantitative polymerase chain reaction( PCR) analysis. ATF-4,phosphorylated PERK and e IF2α protein levels were detected by Western blot assay. RESULTS:: showed that treatment with OPD'( 6 μmol·L-1) significantly increased the rate of apoptosis; expressions of endoplasmic reticulum stress related genes were increased. The morphology of the endoplasmic reticulum was changed. In addition,different concentrations of OPD could partially reverse the myocardial cell injury caused by OPD'. The experimental results showed that OPD'-induced myocardial toxicity may be associated with the endoplasmic reticulum stress,and OPD may modulate the expression of CYP2 J3 to relieve the endoplasmic reticulum stress caused by OPD'.
Apoptosis
;
Cardiotonic Agents
;
pharmacology
;
Cells, Cultured
;
Endoplasmic Reticulum Stress
;
drug effects
;
Humans
;
Myocytes, Cardiac
;
drug effects
;
Saponins
;
pharmacology
;
Spirostans
;
pharmacology
9.Salvianolic Acid A Protects Neonatal Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Injury by Preserving Mitochondrial Function and Activating Akt/GSK-3β Signals.
Xue-Li LI ; Ji-Ping FAN ; Jian-Xun LIU ; Li-Na LIANG
Chinese journal of integrative medicine 2019;25(1):23-30
OBJECTIVE:
To investigate the effects of salvianolic acid A (SAA) on cardiomyocyte apoptosis and mitochondrial dysfunction in response to hypoxia/reoxygenation (H/R) injury and to determine whether the Akt signaling pathway might play a role.
METHODS:
An in vitro model of H/R injury was used to study outcomes on primary cultured neonatal rat cardiomyocytes. The cardiomyocytes were treated with 12.5, 25, 50 μg/mL SAA at the beginning of hypoxia and reoxygenation, respectively. Adenosine triphospate (ATP) and reactive oxygen species (ROS) levels were assayed. Cell apoptosis was evaluated by flow cytometry and the expression of cleaved-caspase 3, Bax and Bcl-2 were detected by Western blotting. The effects of SAA on mitochondrial dysfunction were examined by determining the mitochondrial membrane potential (△Ψm) and mitochondrial permeability transition pore (mPTP), followed by the phosphorylation of Akt (p-Akt) and GSK-3β (p-GSK-3β), which were measured by Western blotting.
RESULTS:
SAA significantly preserved ATP levels and reduced ROS production. Importantly, SAA markedly reduced the number of apoptotic cells and decreased cleaved-caspase 3 expression levels, while also reducing the ratio of Bax/Bcl-2. Furthermore, SAA prevented the loss of △Ψm and inhibited the activation of mPTP. Western blotting experiments further revealed that SAA significantly increased the expression of p-Akt and p-GSK-3β, and the increase in p-GSK-3β expression was attenuated after inhibition of the Akt signaling pathway with LY294002.
CONCLUSION
SAA has a protective effect on cardiomyocyte H/R injury; the underlying mechanism may be related to the preservation of mitochondrial function and the activation of the Akt/GSK-3β signaling pathway.
Adenosine Triphosphate
;
analysis
;
Animals
;
Animals, Newborn
;
Caffeic Acids
;
pharmacology
;
Cell Hypoxia
;
Cells, Cultured
;
Glycogen Synthase Kinase 3 beta
;
physiology
;
Lactates
;
pharmacology
;
Mitochondria, Heart
;
drug effects
;
physiology
;
Mitochondrial Membrane Transport Proteins
;
drug effects
;
Myocytes, Cardiac
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Signal Transduction
;
physiology
10.Adverse reactions analysis of Aconiti Lateralis Radix Praeparata and mechanism prediction of cardiac toxicity by network pharmacology.
Jian HE ; Ping WU ; Yu DONG ; Rui GAO
China Journal of Chinese Materia Medica 2019;44(5):1010-1018
The aim of this paper was to provide reference for the clinical safety use of aconite through the retrieval of literature about adverse reactions,predict its mechanism of cardiac toxicity by using network pharmacology,and provide ideas for the studies on toxicity mechanism of toxic Chinese medicines. The papers on adverse reactions of aconite were searched to established a database and summarize the adverse reactions of aconite. The results of literature review showed that the main causes for adverse reactions in clinical use of aconite included overdose use,short cooking time,consumption of medicinal liquor/medicinal diet,external use and misuse and so on. Therefore,the dosage of aconite should be strictly followed in clinical application,and the decoction method should be notified to the patients in detail to avoid taking the medicinal liquor and diet containing aconite,so as to prevent the occurrence of adverse reactions as much as possible,and make the best use of aconite in clinical application in avoid its toxicity. At the same time,based on the results of literature review,the network construction and visual analysis of cardio toxicity produced by aconite were carried out by using the network pharmacology technologies. RESULTS: showed that aconite can be applied to eight biological processes such as action potential of cardiac myocytes,cardiac conduction-related cell signal transduction,cardiac myocytes contraction,action potential involved in cardiac myocytes contraction,and signal transduction from atrial myocardial cells to atrioventricular node cells,and three target genes(SCN5 A,GJA1,GJA5). It was predicted that Aconiti Lateralis Radix Praeparata may influence cardiomyocyte depolarization,intercellular information transmission and material exchange by acting on three target genes(SCN5 A,GJA1,GJA5) and regulating the sodium channel protein and the expression of gap junction protein,thus affecting the heart rhythm as well as its structure and function and causing cardiac toxicity.
Aconitum
;
chemistry
;
toxicity
;
Cardiotoxicity
;
Drugs, Chinese Herbal
;
toxicity
;
Humans
;
Myocytes, Cardiac
;
drug effects
;
Plant Roots
;
chemistry
;
toxicity

Result Analysis
Print
Save
E-mail