1.Effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction.
Xin-Yi FAN ; Xiao-Qi WEI ; Yun-Yang ZHANG ; Hai-Yin PU ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(21):5838-5850
Jiming Powder is a traditional ancient prescription with good therapeutic effect in the treatment of heart failure, but its mechanism lacks further exploration. In this study, a mouse model of coronary artery ligation was used to evaluate the effect and mechanism of Jiming Powder on myocardial fibrosis in mice with myocardial infarction. The study constructed a mouse model of heart failure after myocardial infarction using the method of left anterior descending coronary artery ligation. The efficacy of Jiming Powder was evaluated from multiple angles, including ultrasound imaging, hematoxylin-eosin(HE) staining, Masson staining, Sirius Red staining, and serum myocardial enzyme spectrum detection. Western blot analysis was performed to detect key proteins involved in ventricular remodeling, including transforming growth factor-β1(TGF-β1), α-smooth muscle actin(α-SMA), wingless-type MMTV integration site family member 3a(Wnt3a), β-catenin, matrix metallopeptidase 2(MMP2), matrix metallopeptidase 3(MMP3), TIMP metallopeptidase inhibitor 1(TIMP1), and TIMP metallopeptidase inhibitor 2(TIMP2). The results showed that compared with the model group, the high and low-dose Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVID;s) and diastole(LVID;d), increased the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improved cardiac function in mice after myocardial infarction, and effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactic dehydrogenase(LDH), thus protecting ischemic myocardium. HE staining showed that Jiming Powder could attenuate myocardial inflammatory cell infiltration after myocardial infarction. Masson and Sirius Red staining demonstrated that Jiming Powder effectively inhibited myocardial fibrosis, reduced the collagen Ⅰ/Ⅲ ratio in myocardial tissues, and improved collagen remodeling after myocardial infarction. Western blot results showed that Jiming Powder reduced the expression of TGF-β1, α-SMA, Wnt3a, and β-catenin, decreased the levels of MMP2, MMP3, and TIMP2, and increased the level of TIMP1, suggesting its role in inhibiting cardiac fibroblast transformation, reducing extracellular matrix metabolism in myocardial cells, and lowering collagen Ⅰ and α-SMA content, thus exerting an anti-myocardial fibrosis effect after myocardial infarction. This study revealed the role of Jiming Powder in improving ventricular remodeling and treating myocardial infarction, laying the foundation for further research on the pharmacological effect of Jiming Powder.
Mice
;
Animals
;
Transforming Growth Factor beta1/metabolism*
;
Matrix Metalloproteinase 2/metabolism*
;
beta Catenin/metabolism*
;
Matrix Metalloproteinase 3/therapeutic use*
;
Powders
;
Ventricular Remodeling
;
Stroke Volume
;
Ventricular Function, Left
;
Myocardial Infarction/drug therapy*
;
Myocardium/pathology*
;
Heart Failure/metabolism*
;
Collagen/metabolism*
;
Creatine Kinase
;
Fibrosis
2.Shexiang Tongxin Dropping Pill Allieviates Heart Failure via Extracellula Matrix-Receptor Interaction Pathways Based on RNA-Seq Transcriptomics and Experimental Studies.
Ya-Fang TAN ; Yu-Han FU ; Min-Zhou ZHANG
Chinese journal of integrative medicine 2023;29(7):600-607
OBJECTIVE:
To investigate the protective mechanisms of Chinese medicine Shexiang Tongxin Dropping Pills (STDP) on heart failure (HF).
METHODS:
Isoproterenol (ISO)-induced HF rat model and angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast (CFs) model were used in the present study. HF rats were treated with and without STDP (3 g/kg). RNA-seq was performed to identify differentially expressed genes (DEGs). Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson's stainings were taken to assess cardiac fibrosis. The levels of collagen I (Col I) and collagen III (Col III) were detected by immunohistochemical staining. CCK8 kit and transwell assay were implemented to test the CFs' proliferative and migratory activity, respectively. The protein expressions of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), MMP-9, Col I, and Col III were detected by Western blotting.
RESULTS:
The results of RNA-seq analysis showed that STDP exerted its pharmacological effects on HF via multiple signaling pathways, such as the extracellular matrix (ECM)-receptor interaction, cell cycle, and B cell receptor interaction. Results from in vivo experiments demonstrated that STDP treatment reversed declines in cardiac function, inhibiting myocardial fibrosis, and reversing increases in Col I and Col III expression levels in the hearts of HF rats. Moreover, STDP (6, 9 mg/mL) inhibited the proliferation and migration of CFs exposed to Ang II in vitro (P<0.05). The activation of collagen synthesis and myofibroblast generation were markedly suppressed by STDP, also the synthesis of MMP-2 and MMP-9, as well as ECM components Col I, Col III, and α-SMA were decreased in Ang II-induced neonatal rats' CFs.
CONCLUSIONS
STDP had anti-fibrotic effects in HF, which might be caused by the modulation of ECM-receptor interaction pathways. Through the management of cardiac fibrosis, STDP may be a compelling candidate for improving prognosis of HF.
Rats
;
Animals
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
RNA-Seq
;
Transcriptome/genetics*
;
Heart Failure/drug therapy*
;
Collagen
;
Collagen Type I/metabolism*
;
Fibrosis
;
Myocardium/pathology*
3.Inhibition of glutaminolysis alleviates myocardial fibrosis induced by angiotensin II.
Pan-Pan WANG ; Hao-Miao BAI ; Si-Yu HE ; Zi-Qi XIA ; Mei-Jie LIU ; Jiong AN ; Jia-Heng ZHOU ; Chen-Han LI ; Wei ZHANG ; Xing ZHANG ; Xin-Pei WANG ; Jia LI
Acta Physiologica Sinica 2023;75(2):179-187
The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 μmol/L) with or without Ang II (0.4 μmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.
Rats
;
Mice
;
Animals
;
Rats, Sprague-Dawley
;
Angiotensin II/pharmacology*
;
Fibroblasts
;
Mice, Inbred C57BL
;
Fibrosis
;
Collagen/pharmacology*
;
Collagen Type I/metabolism*
;
RNA, Messenger/metabolism*
;
Myocardium/pathology*
4.Effect and mechanism of leonurine on pressure overload-induced cardiac hypertrophy in rats.
Xiao-Li DING ; Qing-Qing YUAN ; Ding-Jia XUE ; Fu-Ming YANG ; Yi-Zhun ZHU ; Hai-Bing QIAN
China Journal of Chinese Materia Medica 2022;47(2):461-468
To investigate the effects of leonurine(Leo) on abdominal aortic constriction(AAC)-induced cardiac hypertrophy in rats and its mechanism. A rat model of pressure overload-induced cardiac hypertrophy was established by AAC method. After 27-d intervention with high-dose(30 mg·kg~(-1)) and low-dose(15 mg·kg~(-1)) Leo or positive control drug losartan(5 mg·kg~(-1)), the cardiac function was evaluated by hemodynamic method, followed by the recording of left ventricular systolic pressure(LVSP), left ventricular end-diastolic pressure(LVESP), as well as the maximum rate of increase and decrease in left ventricular pressure(±dp/dt_(max)). The degree of left ventricular hypertrophy was assessed based on heart weight index(HWI) and left ventricular mass index(LVWI). Myocardial tissue changes and the myocardial cell diameter(MD) were measured after hematoxylin-eosin(HE) staining. The contents of angiotensin Ⅱ(AngⅡ) and angiotensin Ⅱ type 1 receptor(AT1 R) in myocardial tissue were detected by ELISA. The level of Ca~(2+) in myocardial tissue was determined by colorimetry. The protein expression levels of phospholipase C(PLC), inositol triphosphate(IP3), AngⅡ, and AT1 R were assayed by Western blot. Real-time quantitative PCR(qRT-PCR) was employed to determine the mRNA expression levels of β-myosin heavy chain(β-MHC), atrial natriuretic factor(ANF), AngⅡ, and AT1 R. Compared with the model group, Leo decreased the LVSP, LVEDP, HWI, LVWI and MD values, but increased ±dp/dt_(max) of the left ventricle. Meanwhile, it improved the pathological morphology of myocardial tissue, reduced cardiac hypertrophy, edema, and inflammatory cell infiltration, decreased the protein expression levels of PLC, IP3, AngⅡ, AT1 R, as well as the mRNA expression levels of β-MHC, ANF, AngⅡ, AT1 R, c-fos, and c-Myc in myocardial tissue. Leo inhibited AAC-induced cardiac hypertrophy possibly by influencing the RAS system.
Angiotensin II/metabolism*
;
Animals
;
Cardiomegaly/genetics*
;
Gallic Acid/analogs & derivatives*
;
Hypertrophy, Left Ventricular/pathology*
;
Myocardium/pathology*
;
Rats
5.Mechanism of Kaixin Powder prescriptions Buxin Decoction regulating PI3K/AKT signaling pathway to protect cardiovascular system: based on network pharmacology and experimental verification.
Xia LI ; Yuan-Bo WANG ; Chao-Chen WANG ; Xin LI ; Yuan HU
China Journal of Chinese Materia Medica 2022;47(21):5916-5925
This study established the EA.hy926 cell myocardial ischemia model to compare the effects of two Kaixin Powder prescriptions, Buxin Decoction(BXD) and Dingzhi Pills(DZP), at three dosages(500, 200, and 100 μg·mL~(-1)) on the cell viability. Further, the public databases(TCMSP, TCMID, SYMMAP, and STRING) and the network pharmacology methods such as KEGG pathway enrichment were employed to decipher the possible molecular mechanism of BXD in exerting the cardioprotective effect. The pharmacological effect of BXD was evaluated with the rat model of isoprenaline(ISO)-induced myocardial ischemia. The expression levels of proteins involved in the phosphatidylinositol-3-kinase/protein kinase B(PI3 K/AKT) signaling pathway were measured by Western blot. BXD significantly increased the viability of EA.hy926 cells, showing the performance superior to DZP. The network pharmacology analysis predicted that BXD might exert cardiac protection through the PI3 K/AKT signaling pathway. The in vivo experiment on rats showed that BXD treatment significantly increased the cardiac ejection fraction(EF), fractional shortening(FS), diastolic left ventricular anterior wall(LVAWd), systolic left ventricular anterior wall(LVAWs), and diastolic left ventricular posterior wall(LVPWd), significantly decreased the beat per minute(BPM) and diastolic left ventricular internal diameter(LVIDd), and significantly improved the ST segment in the electrocardiogram. The pathological results(Masson staining) showed that BXD restored the myocardial thickness, decreased the collagen fiber, increased the muscle fiber, and reduced the infarct area to alleviate myocardial ischemia. Furthermore, BXD lowered the serum levels of inflammatory cytokines [tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6)] and myocardial enzymes [creatine kinase(CK) and lactate dehydrogenase(LDH)], increased the p-AKT/AKT ratio, up-regulated the protein levels of PI3 K, NF-κB, IKK-α, and Bcl-xl, and down-regulated that of the apoptotic protein Bax. In conclusion, BXD may exert cardiac protection effect by regulating the PI3 K/AKT signaling pathway.
Rats
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Powders
;
Network Pharmacology
;
Signal Transduction
;
Myocardial Ischemia
;
Myocardium/pathology*
;
Creatine Kinase
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Prescriptions
7.Research progress on miR-21 in heart diseases.
Journal of Zhejiang University. Medical sciences 2019;48(2):214-218
Pathological processes such as myocardial apoptosis, cardiac hypertrophy, myocardial fibrosis, and cardiac electrical remodeling are involved in the development and progression of most cardiac diseases. MicroRNA-21 (miR-21) has been found to play an important role in heart diseases as a novel type of endogenous regulators, which can inhibit cardiomyocyte apoptosis, improve hypertension and cardiac hypertrophy, promote myocardial fibrosis and atrial electrical remodeling. In this review, we summarize the research progress on the function of miR-21 in heart diseases and its mechanism, and discuss its potential application in diagnosis and treatment of heart diseases.
Cardiomegaly
;
genetics
;
physiopathology
;
Heart Diseases
;
genetics
;
physiopathology
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Myocardium
;
pathology
8.Effect of microRNA-133b on Myocardial Fibrosis.
Song Lin ZHANG ; Fen Ling FAN ; Feng WEI ; Jun WANG ; Yu Shun ZHANG
Acta Academiae Medicinae Sinicae 2019;41(5):589-594
Objective To investigate the effect of microRNA-133b(miR-133b)on cardiac fibrosis and its mechanism.Methods Human cardiac fibroblasts(CFs)were harvested.The proliferation of CFs was detected by CCK8 during the overexpression and knock-down of miR-133b.The expressions of connective tissue growth factor(CTGF),α-smooth muscle actin(α-SMA),collagen Ⅰ,and collagen Ⅲ were detected with qRT-PCR and Western blot analysis after miR-133b overexpression or downexpression.Target genes of miR-133b were predicted by bioinformatics software.Dual-luciferase activity assay were used to verify a target gene of miR-133b.Results qRT-PCR showed that the expression level of miR-133b in the miR-133b mimic group was significantly higher than that in the negative control group(=26.219,=0.000).The expression level of miR-133b in the miR-133b inhibitor group was significantly lower than that in the negative control group(=6.738,=0.003).After 21,45,69,93,and 117 hours of transfection,the proliferation ability of CFs significantly decreased in the miR-133b mimic group but significantly increased in the miR-133b group(all <0.05,compared with the negative control group).After overexpression of miR-133b,the mRNA and protein levels of CTGF(=9.213,=0.001;=8.195,=0.001),α-SMA(=6.511, =0.003;=4.434,=0.011),collagenⅠ(=3.172,=0.034;=4.053,=0.015)and collagen Ⅲ(=6.404,=0.003;=5.319,=0.006)were significantly down-regulated.After the expression of miR-133b was knocked down,the mRNA and protein levels of CTGF(=9.439,=0.001;=14.100,=0.000),α-SMA(=4.519,=0.011;=4.377,=0.012),collagen Ⅰ(=5.966,=0.004;=5.514,=0.005)and collagen Ⅲ(=4.622,=0.010;=4.996,=0.008)were significantly increased.The relative luciferase activity of the cells co-transfected with miR-133b mimic and WT 3'UTR expression vector was significantly lower than that of the cells co-transfected with mimic control and WT 3'UTR expression vectors(=5.654,=0.005);however,there was no significant difference in relative luciferase activity between cells co-transfected with miR-133b mimic and MUT 3'UTR expression vectors and cells co-transfected with mimic control and MUT 3'UTR expression vectors(=0.380,=0.724).Conclusion miR-133b may affect the activation and proliferation of CFs by targeting CTGF and thus improve cardiac fibrosis.
Actins
;
metabolism
;
Cell Proliferation
;
Cells, Cultured
;
Collagen
;
metabolism
;
Connective Tissue Growth Factor
;
metabolism
;
Fibroblasts
;
cytology
;
Fibrosis
;
Humans
;
MicroRNAs
;
genetics
;
Myocardium
;
pathology
9.β1 receptor blocker decreases the myocardial inflammation in the sepsis adult rats through inhibition of TLR4/NF-ΚB signaling pathway.
Xinqiang LIU ; Miaoyun WEN ; Xusheng LI ; Lifang CHEN ; Juhao ZENG ; Yuemin DENG ; Hongke ZENG
Chinese Critical Care Medicine 2019;31(2):193-197
OBJECTIVE:
To explore whether β1 receptor blocker could decrease the myocardial inflammation through the Toll-like receptor 4/nuclear factor-ΚB (TLR4/NF-ΚB) signaling pathway in the sepsis adult rats.
METHODS:
Sixty male Wistar rats (250-300 g) aged 3 months old were allocated to four groups by random number table (n = 15): sham operation group (S group), sepsis model group (CLP group), β1 receptor blocker esmolol intervention group (ES group), and inhibitor of the TLR4 E5564 intervention group (E5564 group). The rat sepsis model was established by cecal ligation and puncture (CLP); S group of rats underwent only an incision. Rats in S group, CLP group and E5564 group were subcutaneous injected with 0.9% sodium chloride (NaCl) 2.0 mL/kg. Besides, the rats in ES group were injected with esmolol (15 mg×kg-1×h-1) by micro pump through the caudal vein. The rats in E5564 group were injected with E5564 (0.3 mg×kg-1×h-1) by micro pump through the caudal vein 1 hour before the CLP surgery. Samples were collected 6 hours after the modelling in each group. The average arterial pressure (MAP) and cardiac output index (CI) were monitored by PU electrical conduction ECG monitor. The levels of serum cardiac troponin I (cTnI), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected by enzyme linked immunosorbent assay (ELISA). The expressions of TLR4, NF-ΚB p65, IL-1β, TNF-α in myocardial tissue was detected by Western Blot.
RESULTS:
There was no significant difference in MAP in each group. Compared with the S group, the CI in the CLP group was significantly decreased, the levels of serum cTnI, IL-1β, TNF-α were significantly increased, the protein expressions of myocardial tissue TLR4, NF-ΚB p65, IL-1β and TNF-α were significantly increased. Compared with the CLP group, the CI in the ES group and E5564 group were significantly increased (mL×s-1×m-2: 58.6±4.3, 58.9±4.4 vs. 41.2±3.9, both P < 0.01), the levels of serum cTnI, IL-1β and TNF-α were significantly decreased [cTnI (μg/L): 1 113.81±26.64, 1 115.74±25.90 vs. 1 975.96±42.74; IL-1β (ng/L): 39.6±4.3, 38.9±4.4 vs. 61.2±3.9; TNF-α (ng/L): 43.1±2.8, 48.7±2.6 vs. 81.3±4.4, all P < 0.01], the protein expressions of myocardial tissue NF-ΚB p65, IL-1β, TNF-α were significantly decreased (NF-ΚB p65/β-actin: 0.31±0.03, 0.43±0.04 vs. 0.85±0.08; IL-1β/β-actin: 0.28±0.05, 0.32±0.03 vs. 0.71±0.06; TNF-α/β-actin: 0.18±0.04, 0.28±0.03 vs. 0.78±0.07, all P < 0.01), but there was no significant difference in protein expression of TLR4 (TLR4/β-actin: 0.89±0.07, 0.87±0.09 vs. 0.95±0.09, both P > 0.05). There was no significant difference in CI, the levels of serum cTnI, IL-1β, TNF-α, and the protein expressions of myocardial tissue TLR4, NF-ΚB p65, IL-1β, TNF-α between ES group and E5564 group (all P > 0.05).
CONCLUSIONS
β1 receptor blocker esmolol may inhibit myocardial inflammatory response in sepsis adult rats through TLR4/NF-ΚB signaling pathway, thereby alleviating sepsis-induced myocardial injury.
Animals
;
Inflammation/prevention & control*
;
Interleukin-1beta
;
Male
;
Myocardium/pathology*
;
NF-kappa B/metabolism*
;
Propanolamines/pharmacology*
;
Rats
;
Rats, Wistar
;
Sepsis/drug therapy*
;
Signal Transduction/drug effects*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha
10.Establishment of cardiac remodeling model in FVB/N mice by intraperitoneal injection of isoproterenol.
Yong-Hua YUAN ; Xue-Ming ZHENG ; Xue-Hua HE ; Li-Ping LIU ; Wei XU ; Xiao-Hui XIA ; Jian-Hong LUO ; Mei LYU ; Qian-Li ZHU ; Sheng WANG ; Shi WU
Chinese Journal of Contemporary Pediatrics 2018;20(6):508-513
OBJECTIVETo explore the feasibility of intraperitoneal injection of isoproterenol (ISO) to induce cardiac remodeling in FVB/N mice.
METHODSForty-eight FVB/N mice were divided into back subcutaneous saline group (subcutaneous saline group), intraperitoneal saline group, back subcutaneous ISO group (subcutaneous ISO group), and intraperitoneal ISO group according to the route of administration of saline or ISO. ISO (30 μg/g body weight/day) was given to the subcutaneous ISO group and the intraperitoneal ISO group, twice daily with an interval of 12 hours, for 14 consecutive days. The subcutaneous saline group and the intraperitoneal saline group were injected with an equal volume of saline. The left ventricular end-diastolic posterior wall thickness was measured by echocardiography, and the ratio of heart weight to tibia length was determined. Hematoxylin-eosin staining was used to determine the myocardial fiber diameter. Picric-sirius red staining was used to determine the myocardial collagen deposition area. Quantitative real-time PCR was used to measure the mRNA expression of collagen I.
RESULTSCompared with the subcutaneous ISO, subcutaneous saline, and intraperitoneal saline groups, the intraperitoneal ISO group had increased sizes of the cardiac cavity and the heart. Compared with the subcutaneous saline and intraperitoneal saline groups, the subcutaneous ISO group showed no significant changes in the gross morphology of the cardiac cavity and the heart. The intraperitoneal ISO group showed significant increases in the ratio of heart weight to tibia length, myocardial fiber diameter, left ventricular end-diastolic posterior wall thickness, myocardial collagen area percentage, and the mRNA expression of collagen I compared with the subcutaneous ISO, subcutaneous saline, and intraperitoneal saline groups (P<0.01). There were no significant differences in the above five indices between the subcutaneous ISO group and the subcutaneous saline and intraperitoneal saline groups (P>0.05). No significant difference in the mortality rate was found between the subcutaneous ISO and intraperitoneal ISO groups (P>0.05).
CONCLUSIONSIntraperitoneal injection of ISO can induce cardiac hypertrophy and fibrosis in FVB/N mice.
Animals ; Atrial Remodeling ; drug effects ; Cardiovascular Diseases ; drug therapy ; metabolism ; pathology ; physiopathology ; Collagen ; metabolism ; Disease Models, Animal ; Humans ; Injections, Intraperitoneal ; Isoproterenol ; administration & dosage ; Male ; Mice ; Myocardium ; metabolism ; pathology

Result Analysis
Print
Save
E-mail