1.MicroRNA-204 Carried by Exosomes of Human Umbilical Cord-derived Mesenchymal Stem Cells Regulates the Polarization of Macrophages in a Mouse Model of Myocardial Ischemia-reperfusion Injury.
Gaili YUAN ; Dongwei YANG ; Limei LUO ; Wen WEN
Acta Academiae Medicinae Sinicae 2022;44(5):785-793
		                        		
		                        			
		                        			Objective To explore the role and mechanism of microRNA-204(miR-204) carried by the exosomes of human umbilical cord-derived mesenchymal stem cells(hUC-MSC) in regulating the polarization of macrophages in a mouse model of myocardial ischemia-reperfusion(I/R) injury. Methods After the hUC-MSCs were isolated,cultured,and identified,their adipogenic and osteogenic differentiation capabilities were determined.The exosomes of hUC-MSCs were separated by ultracentrifugation,and the expression of CD81,CD63,tumor susceptibility gene 101(Tsg101),and calnexin in the exosomes was determined by Nanoparticle Tracking Analysis software,transmission electron microscopy,and Western blotting.Three groups(hUC-MSC,miR-204 mimic,and negative control) were designed for the determination of the expression of miR-204 in the cells and their exosomes by qRT-PCR.The C57BL/6J mice were randomly assigned into a sham operation group,an I/R group,a hUC-MSC exosomes group,a negative control group,and a miR-204 mimic group.Except the sham operation group,the I/R model was established by ligating the left anterior descending artery.The echocardiography system was employed to detect the heart function of mice.HE staining was employed to observe the pathological changes of mouse myocardium.ELISA was employed to determine the levels of interleukin-1β(IL-1β),tumor necrosis factor-α(TNF-α),arginase 1(Arg-1),and IL-10 in the myocardial tissue.After the macrophages of mouse myocardial tissue were isolated,flow cytometry was employed to determine the expression of CD11c and CD206,and ELISA to measure the levels of IL-1β,TNF-α,Arg-1,and IL-10 in the macrophages. Results hUC-MSCs had adipogenic and osteogenic differentiation capabilities,and the exosomes were successfully identified.Compared with the negative control group,the miR-204 mimic group showed up-regulated expression of miR-204 in hUC-MSCs and their exosomes(P<0.001,P<0.001).Compared with the sham operation group,the modeling of I/R increased the left ventricular end-diastolic diameter(LVEDD)(P<0.001),left ventricular end-systolic diameter(LVESD)(P<0.001),myocardial injury score(P<0.001),and the levels of IL-1β(P<0.001),TNF-α(P<0.001),and CD11c(P<0.001).Meanwhile,it lowered the left ventricular ejection fraction(LVEF)(P<0.001),left ventricular fractional shortening(LVFS)(P<0.001),Arg-1(P<0.001),IL-10(P<0.001),and CD206(P<0.001).Compared with those in the I/R group,the LVEDD(P<0.001),LVESD(P<0.001),myocardial injury score(P<0.001),and the levels of IL-1β(P<0.001),TNF-α(P=0.010),and CD11c(P<0.001) reduced,while LVEF(P<0.001),LVFS(P<0.001),and the levels of Arg-1(P<0.001),IL-10(P=0.028),and CD206(P=0.022) increased in the hUC-MSC exosomes group.Compared with those in the negative control group,the LVEDD(P<0.001),LVESD(P<0.001),myocardial injury score(P=0.001),and the levels of IL-1β(P=0.048),TNF-α(P<0.001),and CD11c(P=0.007) reduced,while the LVEF(P<0.001),LVFS(P<0.001),and the levels of Arg-1(P<0.001),IL-10(P=0.001),and CD206(P=0.001) increased in the miR-204 mimic group. Conclusion The hUC-MSC exosomes overexpressing miR-204 can inhibit the polarization of macrophages in the I/R mouse model to M1-type and promote the polarization to M2-type.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Exosomes/pathology*
		                        			;
		                        		
		                        			Interleukin-10/metabolism*
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			Mesenchymal Stem Cells
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			MicroRNAs/genetics*
		                        			;
		                        		
		                        			Myocardial Reperfusion Injury
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			Stroke Volume
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Umbilical Cord/pathology*
		                        			;
		                        		
		                        			Ventricular Function, Left
		                        			
		                        		
		                        	
2.Shenmai Injection Attenuates Myocardial Ischemia/Reperfusion Injury by Targeting Nrf2/GPX4 Signalling-Mediated Ferroptosis.
Sheng-Lan MEI ; Zhong-Yuan XIA ; Zhen QIU ; Yi-Fan JIA ; Jin-Jian ZHOU ; Bin ZHOU
Chinese journal of integrative medicine 2022;28(11):983-991
		                        		
		                        			OBJECTIVE:
		                        			To examine the effect of Shenmai Injection (SMJ) on ferroptosis during myocardial ischemia reperfusion (I/R) injury in rats and the underlying mechanism.
		                        		
		                        			METHODS:
		                        			A total of 120 SPF-grade adult male SD rats, weighing 220-250 g were randomly divided into different groups according to a random number table. Myocardial I/R model was established by occluding the left anterior descending artery for 30 min followed by 120 min of reperfusion. SMJ was injected intraperitoneally at the onset of 120 min of reperfusion, and erastin (an agonist of ferroptosis), ferrostatin-1 (Fer-1, an inhibitor of ferroptosis) and ML385 (an inhibitor of nuclear factor erythroid-2 related factor 2 (Nrf2)) were administered intraperitoneally separately 30 min before myocardial ischemia as different pretreatments. Cardiac function before ischemia, after ischemia and after reperfusion was analysed. Pathological changes in the myocardium and the ultrastructure of cardiomyocytes were observed, and the myocardial infarction area was measured. Additionally, the concentration of Fe2+ in heart tissues and the levels of creatine kinase-MB (CK-MB), troponin I (cTnl), malondialdehyde (MDA) and superoxide dismutase (SOD) in serum were measured using assay kits, and the expressions of Nrf2, glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) were examined by Western blot.
		                        		
		                        			RESULTS:
		                        			Compared with the sham group, I/R significantly injured heart tissues, as evidenced by the disordered, ruptured and oedematous myocardial fibres; the increases in infarct size, serum CK-MB, cTnI and MDA levels, and myocardial Fe2+ concentrations; and the decreases in SOD activity (P<0.05). These results were accompanied by ultrastructural alterations to the mitochondria, increased expression of ACSL4 and inhibited the activation of Nrf2/GPX4 signalling (P<0.05). Compared with I/R group, pretreatment with 9 mL/kg SMJ and 2 mg/kg Fer-1 significantly reduced myocardial I/R injury, Fe2+ concentrations and ACSL4 expression and attenuated mitochondrial impairment, while 14 mg/kg erastin exacerbated myocardial I/R injury (P<0.05). In addition, cardioprotection provided by 9 mL/kg SMJ was completely reversed by ML385, as evidenced by the increased myocardial infarct size, CK-MB, cTnI, MDA and Fe2+ concentrations, and the decreased SOD activity (P<0.05).
		                        		
		                        			CONCLUSIONS
		                        			Ferroptosis is involved in myocardial I/R injury. Pretreatment with SMJ alleviated myocardial I/R injury by activating Nrf2/GPX4 signalling-mediated ferroptosis, thereby providing a strategy for the prevention and treatment of ischemic heart diseases.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Coenzyme A
		                        			;
		                        		
		                        			Creatine Kinase
		                        			;
		                        		
		                        			Ferroptosis
		                        			;
		                        		
		                        			Ligases
		                        			;
		                        		
		                        			Malondialdehyde
		                        			;
		                        		
		                        			Myocardial Infarction/drug therapy*
		                        			;
		                        		
		                        			Myocardial Ischemia/drug therapy*
		                        			;
		                        		
		                        			Myocardial Reperfusion Injury/pathology*
		                        			;
		                        		
		                        			Myocytes, Cardiac/metabolism*
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Phospholipid Hydroperoxide Glutathione Peroxidase
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			;
		                        		
		                        			Troponin I
		                        			
		                        		
		                        	
3.Protective Effects of Danlou Tablet () against Murine Myocardial Ischemia and Reperfusion Injury In Vivo.
Jian-Yong QI ; Lei WANG ; Dong-Sheng GU ; Li-Heng GUO ; Wei ZHU ; Min-Zhou ZHANG
Chinese journal of integrative medicine 2018;24(8):613-620
OBJECTIVETo observe the in vivo effect of Danlou Tablet (, DLT) on myocardial ischemia and reperfusion (I/R) injury.
METHODSDLT effects were evaluated in mouse heart preparation using 30-min coronary occlusion followed by 24-h reperfusion and compared among sham group (n=6), I/R group (n=8), IPC group (ischemia preconditioning, n=6) and DLT group (I/R with DLT pretreatment for 3 days, 750 mg•kg•day, n=8). The effects of DLT were characterized in infarction size (IS) compared with risk region (RR) and left ventricle using the Evans blue/triphenyltetrazolium chloride double dye staining method in vivo. Furthermore, the dose-dependent effect of DLT on I/R injury was evaluated by double staining method. Five different concentrations of DLT (0.625, 1.25, 2.5, 5 and 10 g•kg•day) were chosen in this study, and dose-response curve of DLT was obtained on these data.
RESULTSThe ratio of IS to left ventricle was significantly smaller in the DLT and IPC groups than the I/R group (P<0.05 or P<0.01), the ratio of IS to RR was also reduced in the DLT and IPC groups (P<0.01), while there were no differences in RR among the four groups (P>0.05). Experiments showed incidence of arrhythmias was reduced in the DLT group (P<0.01). Furthermore, DLT produced a dose-dependent inhibitory effect with a half maximal inhibitory concentration of 1.225 g•kg•day.
CONCLUSIONSOur research concluded that DLT was effective in reducing I/R injury in mice, and provided experimental supports for the clinical use of DLT.
Animals ; Arrhythmias, Cardiac ; drug therapy ; pathology ; physiopathology ; Body Temperature ; drug effects ; Cardiotonic Agents ; pharmacology ; therapeutic use ; Dose-Response Relationship, Drug ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Heart Rate ; drug effects ; Heart Ventricles ; drug effects ; pathology ; physiopathology ; Male ; Mice, Inbred C57BL ; Myocardial Reperfusion Injury ; drug therapy ; pathology ; physiopathology ; Risk Factors ; Tablets
4.Salvianolate reduces murine myocardial ischemia and reperfusion injury via ERK1/2 signaling pathways in vivo.
Jian-Yong QI ; Juan YU ; Dong-Hui HUANG ; Li-Heng GUO ; Lei WANG ; Xin HUANG ; Hai-Ding HUANG ; Miao ZHOU ; Min-Zhou ZHANG ; Jiashin WU
Chinese journal of integrative medicine 2017;23(1):40-47
OBJECTIVETo analyze the effects of salvianolate on myocardial infarction in a murine in vivo model of ischemia and reperfusion (I/R) injury.
METHODSMyocardial I/R injury model was constructed in mice by 30 min of coronary occlusion followed by 24 h of reperfusion and pretreated with salvianolate 30 min before I/R (SAL group). The SAL group was compared with SHAM (no I/R and no salvianolate), I/R (no salvianolate), and ischemia preconditioning (IPC) groups. Furthermore, an ERK1/2 inhibitor PD98059 (1 mg/kg), and a phosphatidylinositol-3-kinase (PI3-K) inhibitor, LY294002 (7.5 mg/kg), were administered intraperitoneal injection (i.p) for 30 min prior to salvianolate, followed by I/R surgery in LY and PD groups. By using a double staining method, the ratio of the infarct size (IS) to left ventricle (LV) and of risk region (RR) to LV were compared among the groups. Correlations between IS and RR were analyzed. Western-blot was used to detect the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation changes.
RESULTSThere were no significant differences between RR to LV ratio among the SHAM, I/R, IPC and SAL groups (P>0.05). The SAL and IPC groups had IS of 26.1%±1.4% and 22.3%±2.9% of RR, respectively, both of which were significantly smaller than the I/R group (38.5%±2.9% of RR, P<0.05, P<0.01, respectively). Moreover, the phosphorylation of ERK1/2 was increased in SAL group (P<0.05), while AKT had no significant change. LY294002 further reduced IS, whereas the protective role of salvianolate could be attenuated by PD98059, which increased the IS. Additionally, the IS was not linearly related to the RR (r=0.23, 0.45, 0.62, 0.17, and 0.52 in the SHAM, I/R, SAL, LY and PD groups, respectively).
CONCLUSIONSalvianolate could reduce myocardial I/R injury in mice in vivo, which involves an ERK1/2 pathway, but not a PI3-K signaling pathway.
Animals ; Blotting, Western ; Cardiotonic Agents ; pharmacology ; therapeutic use ; Flavonoids ; pharmacology ; Heart Ventricles ; drug effects ; pathology ; MAP Kinase Signaling System ; drug effects ; Male ; Mice, Inbred C57BL ; Mitogen-Activated Protein Kinase 1 ; metabolism ; Mitogen-Activated Protein Kinase 3 ; metabolism ; Myocardial Reperfusion Injury ; drug therapy ; enzymology ; pathology ; Organ Size ; drug effects ; Phosphorylation ; drug effects ; Plant Extracts ; chemistry ; pharmacology ; therapeutic use ; Protein Kinase Inhibitors ; pharmacology ; Staining and Labeling
5.Protective effect of right coronary artery ischemic preconditioning on myocardial ischemia reperfusion injury in rabbit heart.
Jun LI ; Guoqiang LIN ; Rimao HUANG ; Huihui LU ; Zhong YANG ; Wanjun LUO
Journal of Central South University(Medical Sciences) 2016;41(10):1047-1051
		                        		
		                        			
		                        			To explore the protective effects of right coronary artery ischemic preconditioning and post-conditioning on myocardial ischemia reperfusion injury in rabbit heart.
 Methods: A total of 30 rabbits were randomly divided into 4 groups: a control group (n=7), an ischemia reperfusion group (IR group, n=8), an ischemic preconditioning group (IPC group, n=8) and an ischemic post-conditioning group (IPO group, n=7). Venous blood samples were taken at pre-operation, 1 and 6 h post-operation, and the concentration of serum creatine kinase isoenzyme (CK-MB) and cardiac troponin-T (cTn-T) were measured. The infarct area of cardiac muscle was calculated.
 Results: Compared with the IR group, the levels of CK-MB and cTn-T at 1 and 6 h post-operation in the IPC group and the IPO group were reduced (all P<0.05). Compared with the IR group, the infarct size in the IPC group and the IPO group was significantly decreased, with significant difference (both P<0.05) .
 Conclusion: Right coronary artery ischemic preconditioning and post-conditioning exert significant protective effects on the myocardial ischemia reperfusion injury in New Zealand rabbits.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Coronary Vessels
		                        			;
		                        		
		                        			Creatine Kinase, MB Form
		                        			;
		                        		
		                        			blood
		                        			;
		                        		
		                        			Heart
		                        			;
		                        		
		                        			Ischemia
		                        			;
		                        		
		                        			Ischemic Postconditioning
		                        			;
		                        		
		                        			Ischemic Preconditioning
		                        			;
		                        		
		                        			Ischemic Preconditioning, Myocardial
		                        			;
		                        		
		                        			Myocardial Infarction
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Myocardial Ischemia
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Myocardial Reperfusion Injury
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Myocardium
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Troponin T
		                        			;
		                        		
		                        			blood
		                        			
		                        		
		                        	
6.Effects of Exogenous Nerve Growth Factor on Late Reperfusion after Myocardial Infarction.
Yang LIU ; Shaomin ZHANG ; Chunli SUN ; Jinhui WU
Journal of Biomedical Engineering 2015;32(6):1294-1301
		                        		
		                        			
		                        			This study demonstrates that nerve growth factor (NGF) plays a protective role in myocardial infarction and early reperfusion by reducing the myocardial cell apoptosis and by improving ventricular remodeling and seeks to assess the effects and mechanisms of NGF on late reperfusion after myocardial infarction. The models of late reperfusion were established by ligating the left main coronary artery and then cutting the suture 2 hours after coronary artery ligation. The rats in NGF treatment group were injected 10 µL Ad-NGF (by constructing the adenovirus vector Ad-NGF containing NGF gene) at four locations around infarction. The rats in adenoviral vector (Adv) group were injected 10 µL adenoviral cector as the NGF group. The late reperfusion group and the sham group were given normal saline as above, and the sham group underwent thracotomy without coronary ligation. On the 3rd, 7th, 14th and 28th day after operation, we investigated the role of NGF on late reperfusion by recording cardiac structure and function with echocardiography, by examining the expression of NGF and VIII factor with immunohistochemical method, and by evaluating the myocardial cell apoptosis with terminal dUTP nick end-labeling method (TUNEL). We found that the NGF group had higher expression of NGF protein (P < 0.01) and lower apoptosis index (AI) (P < 0.01 or P < 0.05) compared to the late reperfusion group and Adv group on all time points. The NGF group had remarkably higher level of neovascularization compared to the late reperfusion group on the 14th day (P < 0.01) and the 28th day (P < 0.05). The NGF group also had higher LVEF and FS levels compared to the late reperfusion group on the 14th day (P = 0.006, P = 0.006) and on the 28th day (P = 0.000, P = 0.000). Whereas the NGF group had lower LVEDD, LVESD (P = 0.038, P = 0.000) and lower LVEDV, LVESV (P = 0.001, P = 0.000) on the 28th day compared to late reperfusion group. In this experiment, the NGF gene carried by adenovirus vector had been transfected and obviously increased the expression of NGF protein in NGF group. NGF may help postpone the myocardial remodeling and improve the heart function by promoting the myocardial neovascularization and inhibiting myocardial apoptosis.
		                        		
		                        		
		                        		
		                        			Adenoviridae
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Echocardiography
		                        			;
		                        		
		                        			Genetic Therapy
		                        			;
		                        		
		                        			Myocardial Infarction
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Myocardium
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Myocytes, Cardiac
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Nerve Growth Factor
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Reperfusion Injury
		                        			;
		                        		
		                        			therapy
		                        			
		                        		
		                        	
7.Flow cytometric analysis of circulating microvesicles derived from myocardial Ischemic preconditioning and cardioprotection of Ischemia/reperfusion Injury in rats.
Miao LIU ; Yi-lu WANG ; Man SHANG ; Yao WANG ; Qi ZHANG ; Shao-xun WANG ; Su WEI ; Kun- wei ZHANG ; Chao LIU ; Yan-na WU ; Ming-lin LIU ; Jun-qiu SONG ; Yan-xia LIU
Chinese Journal of Applied Physiology 2015;31(6):524-531
OBJECTIVETo establish a flow cytometric method to detect the alteration of phenotypes and concentration of circulating microvesicles (MVs) from myocardial ischemic preconditioning (IPC) treated rats (IPC-MVs), and to investigate the effects of IPC-MVs on ischemia/reperfusion (I/R) injury in rats.
METHODSMyocardial IPC was elicited by three.cycles of 5-min ischemia and 5-min reperfusion of the left anterior descending (LAD) coronary artery. Platelet-free plasma (PFP) was isolated through two steps of centrifugation at room temperature from the peripheral blood, and IPC-MVs were isolated by ultracentrifugation from PFR PFP was incubated with anti-CD61, anti-CD144, anti-CD45 and anti-Erythroid Cells, and added 1, 2 µm latex beads to calibrate and absolutely count by flow cytometry. For functional research, I/R injury was induced by 30-min ischemia and 120-min reperfusion of LAD. IPC-MVs 7 mg/kg were infused via the femoral vein in myocardial I/R injured rats. Mean arterial blood pressure (MAP), heart rate (HR) and ST-segment of electro-cardiogram (ECG) were monitored throughout the experiment. Changes of myocardial morphology were observed after hematoxylin-eosin (HE) staining. The activity of plasma lactate dehydrogenase (LDH) was tested by Microplate Reader. Myocardial infarct size was measured by TTC staining.
RESULTSTotal IPC-MVs and different phenotypes, including platelet-derived MVs (PMVs), endothelial cell-derived MVs (EMVs), leucocyte-derived MVs (LMVs) and erythrocyte-derived MVs (RMVs) were all isolated which were identified membrane vesicles (<1 Vm) with corresponding antibody positive. The numbers of PMVs, EMVs and RMVs were significantly increased in circulation of IPC treated rats (P<0.05, respectively). In addition, at the end of 120-min reperfusion in I/R injured rats, IPC-MVs markedly increased HR (P<0.01), decreased ST-segment and LDH activity (P < 0.05, P < 0.01). The damage of myocardium was obviously alleviated and myocardial infarct size was significantly lowered after IPC-MVs treatment (P < 0.01).
CONCLUSIONThe method of flow cytometry was successfully established to detect the phenotypes and concentration alteration of IPC-MVs, including PMVs, EMVs, LMVs and RMVs. Furthermore, circulating IPC-MVs protected myocardium against I/R injury in rats.
Animals ; Cell-Derived Microparticles ; metabolism ; Coronary Vessels ; pathology ; Flow Cytometry ; Heart Rate ; Ischemic Preconditioning, Myocardial ; Myocardial Infarction ; physiopathology ; Myocardial Reperfusion Injury ; physiopathology ; Myocardium ; pathology ; Phenotype ; Rats
8.Mitochondrial aldehyde dehydrogenase in myocardial ischemia-reperfusion injury: from bench to bedside.
Jiao-Jiao PANG ; Linzi A BARTON ; Yu-Guo CHEN ; Jun REN
Acta Physiologica Sinica 2015;67(6):535-544
		                        		
		                        			
		                        			Acute myocardial infarction is one of the major causes of mortality worldwide. Reperfusion in a timely fashion is the most effective way to limit infarct size. However, reperfusion can itself prompt further myocardial injury. This phenomenon is commonly known as myocardial ischemia-reperfusion (IR) injury. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme metabolizing acetaldehyde and toxic aldehydes. Increasing evidence has revealed a cardioprotective role of ALDH2 in myocardial IR injury. Evidence from animal studies has shown that ALDH2 diminishes acute myocardial infarct size, ameliorates cardiac dysfunction and prevents reperfusion arrhythmias. The activity of ALDH2 is severely compromised if it is encoded by the mutant ALDH2*2 gene, with an incidence of approximately 40% in Asian populations. Epidemiological surveys in the Asian population have depicted that ALDH2 polymorphism is closely associated with higher prevalence of acute myocardial infarction and coronary artery disease. Therefore, targeting ALDH2 may represent a promising avenue to protect against IR injury. This review recapitulates the underlying mechanisms involved in the protective effect of ALDH2 in cardiac IR injury. Translational potential of ALDH2 in the management of coronary heart disease is also discussed.
		                        		
		                        		
		                        		
		                        			Aldehyde Dehydrogenase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Heart
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mitochondria, Heart
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			Myocardial Reperfusion Injury
		                        			;
		                        		
		                        			Myocardium
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
9.Protection effect of Yindan Xinnaotong capsule and main compositions compatibility on myocardial ischemia/reperfusion injury.
Wan-Dan WANG ; Lan WANG ; Long CHENG ; Xiao-Jie YIN ; Hai-Yu XU ; Jian-Lu WANG ; Ri-Xin LIANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2014;39(9):1690-1694
OBJECTIVETo study the protected effect of Yindan Xinnaotong capsule (YDXNTC) and main components compatibility on myocardium ischemia/reperfusion injury.
METHODGlobal ischemia/reperfusion was adopted to induce myocardial ischemia/reperfusion injury (MIRI) in isolated rat heart. Sprague-Dawley (SD) rats were divided into control, model, YDXNTC, Ginkgo biloba extract (GBE) group, ethanol extract of Salvia miltiorrhiza (SM-E) group, aqueous extract of Salvia miltiorrhiza (SM-H) group, mixed compatibility of other components in YDXNTC (MC), GBE and SM-E compatibility (GSEC), GBE and SM-H compatibility (GSHC), and SM-E and SM-H compatibility (SEHC). During the experiment, electrocardiogram was recorded to observe cardiac arrest time, heart resuscitation time, regaining normal rhythm time, the incidence and duration of arrhythmias (VT/VF). At the end of reperfusion, hearts were arrested and homogenated to assay the activity of superoxide dismutase (SOD), and the content of malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), cardiac troponin I.
RESULT(1) YDXNTC, SM-E, SM-H and MC elevated cardiac arrest time, also reduced rebeating time, restoring normal rhythm time as well as the duration of arrhythmia, but no remarkable impact on VT/VF occurrence. GBE was effective for incidence of VT/VF, also achieved good effect on shortening rebeating time, restoring normal rhythm time and arrhythmia duration. Likewise, obviously reduced rebeating time, restoring normal rhythm time and arrhythmia duration, and evaluated cardiac arrest time were also exhibited in compatibility groups except that no lengthened cardiac arrest time was detected in GSHC. And the incidence of VT/VF was decreased by GSEC. (2) YDXNT, ginkgo biloba extract (GBE), ethanol extract of salvia miltiorrhiza (SM-E), GBE and SM-E compatibility (GSEC), and SM-E and aqueous extract of salvia miltiorrhiza (SM-H) compatibility (SEHC) could improved SOD and decreased MDA level SM-H, mixed compatibility of other elements in YDXNTC (MC) and GBE and SM-H compatibility (GSHC) showed a role on MDA reduction. (3) LDH was declined by YDXNT and SM-H. CK-MB was reduced by GBE, SM-E, SM-H, and GSEC. (4) The release of cTnI was only inhibited by GSEC.
CONCLUSIONYDXNTC, primary materials and main components compatibility has a certain protection effect on MIRI, its mechanism may be related to antioxidant and calcium overload reduction.
Animals ; Arrhythmias, Cardiac ; physiopathology ; prevention & control ; Capsules ; Creatine Kinase, MB Form ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Electrocardiography ; Ginkgo biloba ; chemistry ; Heart ; drug effects ; physiopathology ; In Vitro Techniques ; L-Lactate Dehydrogenase ; metabolism ; Male ; Malondialdehyde ; metabolism ; Myocardial Reperfusion Injury ; metabolism ; physiopathology ; prevention & control ; Myocardium ; metabolism ; pathology ; Phytotherapy ; Plant Extracts ; pharmacology ; Protective Agents ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Salvia miltiorrhiza ; chemistry ; Superoxide Dismutase ; metabolism ; Troponin I ; metabolism
10.Effect of short-term high-dose atorvastatin on systemic inflammatory response and myocardial ischemic injury in patients with unstable angina pectoris undergoing percutaneous coronary intervention.
Fei SUN ; Zhao YIN ; Quanxing SHI ; Bei ZHAO ; Shouli WANG
Chinese Medical Journal 2014;127(21):3732-3737
BACKGROUNDPercutaneous coronary intervention (PCI) could develop periprocedural myocardial infarction and inflammatory response and statins can modify inflammatory responses property. The aim of this study was to evaluate whether short-term high-dose atorvastatin therapy can reduce inflammatory response and myocardial ischemic injury elicited by PCI.
METHODSFrom March 2012 to May 2014, one hundred and sixty-five statin-naive patients with unstable angina referred for PCI at Department of Cardiology of the 306th Hospital, were enrolled and randomized to 7-day pretreatment with atorvastatin 80 mg/d as high dose group (HD group, n = 56) or 20 mg/d as normal dose group (ND group, n = 57) or an additional single high loading dose (80 mg) followed 6-day atorvastatin 20 mg/d as loading dose group (LD group, n = 52). Plasma C-reactive protein (CRP) and interleukin-6 (IL-6) levels were determined before intervention and at 5 minutes, 24 hours, 48 hours, 72 hours, and 7 days after intervention. Creatine kinase-myocardial isoenzyme (CK-MB) and cardiac troponin I (cTnI) were measured at baseline and then 24 hours following PCI.
RESULTSPlasma CRP and IL-6 levels increased from baseline after PCI in all groups. CRP reached a maximum at 48 hours and IL-6 level reached a maximum at 24 hours after PCI. Plasma CRP levels at 24 hours after PCI were significantly lower in the HD group ((9.14±3.02) mg/L) than in the LD group ((11.06±3.06) mg/L) and ND group ((12.36±3.08) mg/L, P < 0.01); this effect persisted for 72 hours. IL-6 levels at 24 hours and 48 hours showed a statistically significant decrease in the HD group ((16.19±5.39) ng/L and (14.26±4.12) ng/L, respectively)) than in the LD group ((19.26±6.34) ng/L and (16.03±4.08) ng/L, respectively, both P < 0.05) and ND group ((22.24±6.98) ng/L and (17.24±4.84) ng/L, respectively). IL-6 levels at 72 hours and 7 days showed no statistically significant difference among the study groups. Although PCI caused a significant increase in CK-MB and cTnI at 24 hours after the procedure in all groups, the elevated CK-MB and cTnI values were lower in the HD group ((4.71±4.34) ng/ml and (0.086±0.081) ng/ml, respectively) than in the ND group ((7.24±6.03) ng/ml and (0.138±0.103) ng/ml, respectively, both P < 0.01) and LD group ((6.80±5.53) ng/ml and (0.126±0.101) ng/ml, respectively, both P < 0.01).
CONCLUSIONShort-term high-dose atorvastatin treatment before PCI significantly reduced systemic inflammatory response and myocardial ischemic injury elicited by PCI.
Aged ; Angina, Unstable ; therapy ; Atorvastatin Calcium ; administration & dosage ; therapeutic use ; Female ; Humans ; Male ; Middle Aged ; Myocardial Reperfusion Injury ; drug therapy ; Myocardium ; pathology ; Percutaneous Coronary Intervention ; Systemic Inflammatory Response Syndrome ; drug therapy ; Treatment Outcome
            
Result Analysis
Print
Save
E-mail