1.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
2.Inhibitory Effect of Cinobufotalin on Macrophage Inflammatory Factor Storm and Its Mechanism.
Xi-Xi LIU ; Chen-Cheng LI ; Jing YANG ; Wei-Guang ZHANG ; Re-Ai-La JIANATI ; Xiao-Li ZHANG ; Zu-Qiong XU ; Xing-Bin DAI ; Fang TIAN ; Bi-Qing CHEN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(3):880-888
OBJECTIVE:
To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.
METHODS:
THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.
RESULTS:
1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.
CONCLUSION
Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.
Humans
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/genetics*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Lipopolysaccharides/pharmacology*
;
NF-kappa B
3.Leaky Gut Plays a Critical Role in the Pathophysiology of Autism in Mice by Activating the Lipopolysaccharide-Mediated Toll-Like Receptor 4-Myeloid Differentiation Factor 88-Nuclear Factor Kappa B Signaling Pathway.
Fang LI ; Haoran KE ; Siqi WANG ; Wei MAO ; Cexiong FU ; Xi CHEN ; Qingqing FU ; Xiaori QIN ; Yonghua HUANG ; Bidan LI ; Shibing LI ; Jingying XING ; Minhui WANG ; Wenlin DENG
Neuroscience Bulletin 2023;39(6):911-928
Increased intestinal barrier permeability, leaky gut, has been reported in patients with autism. However, its contribution to the development of autism has not been determined. We selected dextran sulfate sodium (DSS) to disrupt and metformin to repair the intestinal barrier in BTBR T+tf/J autistic mice to test this hypothesis. DSS treatment resulted in a decreased affinity for social proximity; however, autistic behaviors in mice were improved after the administration of metformin. We found an increased affinity for social proximity/social memory and decreased repetitive and anxiety-related behaviors. The concentration of lipopolysaccharides in blood decreased after the administration of metformin. The expression levels of the key molecules in the toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-nuclear factor kappa B (NF-κB) pathway and their downstream inflammatory cytokines in the cerebral cortex were both repressed. Thus, "leaky gut" could be a trigger for the development of autism via activation of the lipopolysaccharide-mediated TLR4-MyD88-NF-κB pathway.
Mice
;
Animals
;
NF-kappa B
;
Myeloid Differentiation Factor 88/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Toll-Like Receptor 4/metabolism*
;
Autistic Disorder/metabolism*
;
Signal Transduction/physiology*
4.Mechanism of Berberis atrocarpa anthocyanin against Alzheimer's disease based on network pharmacology and experimental verification.
Hai-Yan BAO ; Ling CHEN ; Ying YANG ; Min LI ; Hui-Min LI ; Ying-Ying KANG ; Jian-Guang LI
China Journal of Chinese Materia Medica 2023;48(3):778-788
This study aimed to explore the potential mechanism of Berberis atrocarpa Schneid. anthocyanin against Alzheimer's disease(AD) based on network pharmacology, molecular docking technology, and in vitro experiments. Databases were used to screen out the potential targets of the active components of B. atrocarpa and the targets related to AD. STRING database and Cytoscape 3.9.0 were adopted to construct a protein-protein interaction(PPI) network and carry out topological analysis of the common targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed on the target using the DAVID 6.8 database. Molecular docking was conducted to the active components and targets related to the nuclear factor kappa B(NF-κB)/Toll-like receptor 4(TLR4) pathway. Finally, lipopolysaccharide(LPS) was used to induce BV2 cells to establish the model of AD neuroinflammation for in vitro experimental validation. In this study, 426 potential targets of active components of B. atrocarpa and 329 drug-disease common targets were obtained, and 14 key targets were screened out by PPI network. A total of 623 items and 112 items were obtained by GO functional enrichment analysis and KEGG pathway enrichment analysis, respectively. Molecular docking results showed that NF-κB, NF-κB inhibitor(IκB), TLR4, and myeloid differentiation primary response 88(MyD88) had good binding abilities to the active components, and malvidin-3-O-glucoside had the strongest binding ability. Compared with the model group, the concentration of nitric oxide(NO) decreased at different doses of malvidin-3-O-glucoside without affecting the cell survival rate. Meanwhile, malvidin-3-O-glucoside down-regulated the protein expressions of NF-κB, IκB, TLR4, and MyD88. This study uses network pharmacology and experimental verification to preliminarily reveal that B. atrocarpa anthocyanin can inhibit LPS-induced neuroinflammation by regulating the NF-κB/TLR4 signaling pathway, thereby achieving the effect against AD, which provides a theoretical basis for the study of its pharmacodynamic material basis and mechanism.
NF-kappa B
;
Alzheimer Disease
;
Network Pharmacology
;
Anthocyanins
;
Berberis
;
Lipopolysaccharides
;
Molecular Docking Simulation
;
Myeloid Differentiation Factor 88
;
Neuroinflammatory Diseases
;
Toll-Like Receptor 4
;
I-kappa B Proteins
5.Formononetin improves cognitive behavior in aging rats with chronic unpredictable mild in hippocampal tissue stress by blocking the NF-κB pathway and inhibiting the release of inflammatory factors.
Chunhua ZHANG ; Lingyun HU ; Yun XIE ; Jing WEN ; Yadi CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):610-616
Objective To investigate the effects of formononetin (FMN) on cognitive behavior and inflammation in aging rats with chronic unpredictable mild stress (CUMS). Methods SD rats aged about 70 weeks were divided into healthy control group, CUMS model group, CUMS combined with 10 mg/kg FMN group, CUMS combined with 20 mg/kg FMN group and CUMS combined with 1.8 mg/kg fluoxetine hydrochloride (Flu) group. Except for healthy control group, other groups were stimulated with CUMS and administered drugs for 28 days. Sugar water preference, forced swimming experiment and open field experiment were used to observe the emotional behavior of rats in each group. HE staining was used to observe the pathological injury degree of brain equine area. The contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were detected by the kit. The apoptosis was tested by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) in the brain tissue. The levels of tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS) and interleukin 6 (IL-6) in peripheral blood were measured by ELISA. Western blot analysis was used to detect Bcl2, Bcl2 associated X protein (BAX), cleaved caspase-9, cleaved caspase-3, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in brain tissues. Results Compared with CUMS model group, sugar water consumption, open field activity time, open field travel distance and swimming activity time significantly increased in the CUMS combined with 20 mg/kg FMN group and the CUMS combined with 1.8 mg/kg Flu group. The number of new outarm entry increased significantly, while the number of initial arm entry and other arm entry decreased significantly. The pathological damage of brain equine area was alleviated, and the contents of 5-HT and 5-HIAA were significantly increased. The ratio of BAX/Bcl2 and the expression of cleaved caspase-9 and cleaved caspase-3 protein as well as the number of apoptotic cells were significantly decreased. The contents of TNF-α, iNOS and IL-6 were significantly decreased. The protein levels of TLR4, MyD88 and p-NF-κB p65 were significantly decreased. Conclusion FMN can inhibit the release of inflammatory factors by blocking NF-κB pathway and improve cognitive and behavioral ability of CUMS aged rats.
Rats
;
Animals
;
Horses
;
NF-kappa B/metabolism*
;
Signal Transduction
;
bcl-2-Associated X Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Myeloid Differentiation Factor 88
;
Hydroxyindoleacetic Acid/pharmacology*
;
Serotonin/metabolism*
;
Rats, Sprague-Dawley
;
Hippocampus/metabolism*
;
Cognition
6.Anti-inflammatory effects of Abelmoschus manihot (L.) Medik. on LPS-induced cystitis in mice: potential candidate for cystitis treatment based on classic use.
Su ZHOU ; Kai-Kai FAN ; Li-Fei GU ; Bo-Yang YU ; Cheng-Zhi CHAI
Chinese Journal of Natural Medicines (English Ed.) 2022;20(5):321-331
Abelmoschus manihot (L.) Medik. (A. manihot) is a traditional Chinese herbal medicine with a variety of pharmacological properties. It was first recorded in Jiayou Materia Medica dating back to the Song dynasty to eliminate urinary tract irritation by clearing away heat and diuretic effect. However, its pharmacological action on urinary tract infections has not been investigated. The present study aims to evaluate the anti-inflammatory activity of A. manihot on a mouse model of lipopolysaccharide (LPS)-induced cystitis. The results showed that A. manihot decreased white blood cell (WBC) count in urine sediments of the cystitis mice, alleviated bladder congestion, edema, as well as histopathological damage, reduced the expression levels of tumor necrosis factor-α, interleukin-6, and interleukin-1β simultaneously. Moreover, A. manihot administration significantly downregulated the expression levels of TLR4, MYD88, IκBα, p-IκBα, NF-κB p65, and p-NF-κB p65 in LPS-induced cystitis mice. These findings demonstrated the protective effect of A. manihot against LPS-induced cystitis, which is attributed to its anti-inflammatory profile by suppressing TLR4/MYD88/NF-κB pathways. Our results suggest that A. manihot could be a potential candidate for cystitis treatment.
Abelmoschus/metabolism*
;
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
Cystitis
;
Female
;
Humans
;
Lipopolysaccharides/pharmacology*
;
Male
;
Mice
;
Myeloid Differentiation Factor 88/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
NF-kappa B/metabolism*
;
Signal Transduction
;
Toll-Like Receptor 4/metabolism*
7.Effect of Tetrastigma hemsleyanum on sepsis and mechanism based on network pharmacology and experimental verification.
Jing-Ru ZHENG ; Chun-Lian JI ; Liang-Hui ZHAN ; Jin-Bao PU ; Li YAO
China Journal of Chinese Materia Medica 2022;47(17):4744-4754
Based on network pharmacology and in vivo experiment, this study explored the therapeutic effect of Tetrastigma hemsle-yanum(SYQ) on sepsis and the underlying mechanism. The common targets of SYQ and sepsis were screened out by network pharmacology, and the "SYQ-component-target-sepsis" network was constructed. The protein-protein interaction(PPI) network was established by STRING. Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment were performed based on DAVID to predict the anti-sepsis mechanism of SYQ. The prediction results of network pharmacology were verified by animal experiment. The network pharmacology results showed that the key anti-sepsis targets of SYQ were tumor necrosis factor(TNF), interleukin(IL)-6, IL-1β, IL-10, and cysteinyl asparate specific proteinase 3(caspase-3), which were mainly involved in Toll-like receptor 4(TLR4)/myeloid differentiation factor 88(MyD88)/nuclear factor kappaB(NF-κB) signaling pathway. The results of animal experiment showed that SYQ can decrease the content of C-reactive protein(CRP), procalcitonin(PCT), lactate dehydrogenase(LDH), IL-6, TNF-α, and IL-1β, increase the content of IL-10, and down-regulate the protein levels of Bcl-2-associa-ted X(Bax)/B-cell lymphoma 2(Bcl2), cleaved caspase-3, TLR4, MyD88, and p-NF-κB p65/NF-κB p65. In summary, SYQ plays an anti-inflammatory role in the treatment of sepsis by acting on the key genes related to inflammation and apoptosis, such as TNF-α, IL-6, IL-lβ, IL-10, Bax, Bcl2, and cleaved caspase-3. The mechanism is the likelihood that it suppresses the TLR4/MyD88/NF-κB signaling pathway, which verifies relative prediction results of network pharmacology.
Animals
;
Anti-Inflammatory Agents/therapeutic use*
;
C-Reactive Protein
;
Caspase 3/metabolism*
;
Interleukin-10
;
Interleukin-6/metabolism*
;
Lactate Dehydrogenases/metabolism*
;
Myeloblastin/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
NF-kappa B/metabolism*
;
Network Pharmacology
;
Procalcitonin/therapeutic use*
;
Sepsis/genetics*
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
8.Protective effect of Shenfu Injection on rats with chronic heart failure based on HMGB1/TLR4/NF-κB signaling pathway.
Shu-Min HUANG ; Xiao-Qian LIAO ; Xin-Yu FAN ; Zi-Yi WANG ; Si-Yuan HU ; Zhi-Xi HU
China Journal of Chinese Materia Medica 2022;47(20):5556-5563
The study aimed to explore the mechanism and targets of Shenfu Injection in the regulation of inflammatory injury in chronic heart failure rats based on the high mobility group box-1/Toll like receptor 4/nuclear factor kappa-B(HMGB1/TLR4/NF-κB) signaling pathway. The rat model of chronic heart failure was established using isoproterenol. The modeled rats were divided into three groups by random number table: the model group, Shenfu group and glycopyrrolate group, and the normal group was also set. The rats were administrated for 15 consecutive days, and on the following day after the last administration, they were sacrificed for sample collection. The cardiac mass index and left ventricular mass index of the rats in each group were measured, and the echocardiogram was used to analyze the cardiac function indices, and ELISA to test the inflammatory indices in rat serum. The pathological morphology and fibrosis status of rat heart tissues were observed by HE staining and Masson staining, respectively. The content of HMGB1 was determined by immunofluorescence staining. The protein and mRNA expression of HMGB1/TLR4/TLR4 signaling pathway was detected by Western blot and RT-qPCR, respectively. The results showed that the chronic heart failure rat model was successfully prepared. The rats in the model group had reduced cardiac function, increased levels of HMGB1 and inflammatory factors(P<0.05), and elevated protein and mRNA expression of HMGB1, TLR4, MyD88, and NF-κB P65 in myocardial tissue(P<0.05), with fibrous connective tissue hyperplasia, inflammatory cell infiltration and severe fibrosis. Shenfu Injection improved cardiac function, decreased the levels of HMGB1 and inflammatory factors(P<0.05) and the protein and mRNA expression of HMGB1, TLR4, MyD88, and NF-κB P65 in myocardial tissue(P<0.05), ameliorated interstitial fibrous connective tissue hyperplasia and inflammatory cell infiltration, and reduced fibrosis. In conclusion, Shenfu Injection can reduce inflammatory damage and improve cardiac function in chronic heart failure rats by regulating the HMGB1/TLR4/NF-κB signaling pathway.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
HMGB1 Protein/pharmacology*
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Hyperplasia
;
Rats, Sprague-Dawley
;
Signal Transduction
;
RNA, Messenger
;
Heart Failure/genetics*
;
Fibrosis
9.Effect and mechanism of thymosin beta 4 on spinal cord-derived neural stem /progenitor cell injury induced by oxidative stress.
China Journal of Orthopaedics and Traumatology 2022;35(8):763-771
OBJECTIVE:
To investigate the role and mechanism of thymosin beta 4 (Tβ4) in oxidative stress injury of spinal cord-derived neural stem/progenitor cells (NSPCs) induced by hydrogen peroxide (H2O2).
METHODS:
NSPCs were isolated from Sprague-Dawley (SD) adult male rats, and divided into control group (untreated NSPCs cells), H2O2 group (NSPCs cells damaged by 500 μM H2O2), Tβ4 -3 groups (NSPCs were treated with 1, 2.5, 5 μg/ml Tβ4 on the basis of H2O2 treatment) and TAK-242 group [NSPCs were treated with 5 μg/ml Tβ4 and Toll-like receptor 4(TLR4) inhibitor TAK-242 on the basis of H2O2 treatment]. NSPCs were transfected with lentivirus vector of myeloid differentiation factor 88(MyD88) to construct MyD88-overexpressing cell lines, which were treated with H2O2 and Tβ4. The expression of Tβ4, TLR4, MyD88 were detected by qRT-PCR and Western blot. Cell viability was detected by MTT assay and lactate dehydrogenase(LDH) assay kit. Ca2+ concentration was detected by Fluo-3/AM probe method. The apoptosis of NSPCs was detected by flow cytometry and Caspase-3 and Caspase-9 kits;reactive oxygen species (ROS), superoxi dedismu-tase dismutase(SOD) activity and glutathione (GSH) content were detected by corresponding kits. Interleukin(IL)-6 and IL-1β were detected by enzyme-linked immunosorbent assay.
RESULTS:
The expression of Tβ4 was decreased in H2O2 injured NSPCs(P<0.05). Compared with H2O2 group, the cell viability and Ca2+ concentration was significantly increased, release of LDH and apoptosis were significantly decreased, production of ROS and pro-inflammatory cytokines were significantly decreased, and the expression levels of TLR4 and MyD88 protein were significantly decreased in Tβ4-3 groups and TAK-242 group (P<0.05). After overexpression of MyD88, cell viability, SOD activity and GSH content of NSPCs decreased, LDH release and apoptosis increased significantly (P<0.05), while after treatment with Tβ4, cell viability, SOD activity and GSH content increased, LDH release and apoptosis decreased (P<0.05).
CONCLUSION
Tβ4 attenuates H2O2-induced NSPCs oxidative stress, apoptosis and inflammation in NSPCs via inhibiting TLR4 and MyD88 pathways.
Animals
;
Apoptosis
;
Calcium/pharmacology*
;
Cell Survival
;
Hydrogen Peroxide/pharmacology*
;
Male
;
Myeloid Differentiation Factor 88/pharmacology*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/pharmacology*
;
Spinal Cord Injuries/drug therapy*
;
Stem Cells
;
Superoxide Dismutase/pharmacology*
;
Thymosin/metabolism*
;
Toll-Like Receptor 4/metabolism*
10.Genistein attenuates LPS-induced inflammatory injury of rat dorsal root ganglion neuron via down-regulating HDAC6.
Songlin ZHOU ; Junqing HUANG ; Ke LI ; Shuaigang DU ; Bin YANG ; Zhonghua GUO
Journal of Central South University(Medical Sciences) 2022;47(6):707-716
OBJECTIVES:
Neuropathic pain (NP) is a chronic pain caused by somatosensory neuropathy or disease, and genistein (Gen) might be a potential drug for the treatment of NP. Therefore, this study aims to investigate the effect of Gen on lipopolysaccharide (LPS)-induced inflammatory injury of dorsal root ganglion neuron (DRGn) in rats and the possible molecular mechanism.
METHODS:
The DRGn of 1-day-old juvenile rats were taken for isolation and culture. The DRGn in logarithmic growth phase were divided into a control group, a LPS group, a tubastatin hydrochloride (TSA)+LPS group, a Gen1+LPS group, a Gen2+LPS group, a Gen2+LPS+TSA group, a Gen2+pcDNA-histone deacetylase 6 (HDAC6)+LPS group, and a Gen2+pcDNA3.1+LPS group. The LPS group was treated with 1 μg/mL LPS for 24 h; the TSA+LPS group, the Gen1+LPS group, the Gen2+LPS group were treated with 5 μmol/L TSA, 5 μmol/L Gen, 10 μmol/L Gen respectively for 0.5 h, and then added 1 μg/mL LPS for 24 h; the Gen2+TSA+LPS group was treated with 10 μmol/L Gen and 5 μmol/L TSA for 0.5 h and then added 1 μg/mL LPS for 24 h; the Gen2+pcDNA-HDAC6+LPS group and the Gen2+pcDNA3.1+LPS group received 100 nmol/L pcDNA-HDAC6 and pcDNA3.1 plasmids respectively, and 24 h after transfection, 10 μmol/L Gen was pretreated for 0.5 h, and then added 1 μg/mL LPS for 24 h. Real-time RT-PCR was used to detect the HDAC6 mRNA expression in DRGn; CCK-8 method was used to detect cell viability of DRGn; flow cytometry was used to detect cell apoptosis of DRGn; ELISA was used to detect the levels of IL-1β, IL-6, and TNF-α in DRGn culture supernatant; Western blotting was used to detect the protein expression of HDAC6, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and NF-κB p65 in DRGn.
RESULTS:
Compared with the control group, the expression levels of HDAC6 mRNA and protein, the expression levels of TLR4 and MyD88 protein in DRGn of LPS group rats were significantly up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly increased, and the activity of DRGn was significantly decreased, the apoptosis rate was significantly increased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly increased (all P<0.05). Compared with the LPS group, the expression levels of HDAC6 mRNA and protein, TLR4 and MyD88 protein expression levels in DRGn of the TSA+LPS group, the Gen1+LPS group, the Gen2+LPS group and the Gen2+TSA+LPS group were significantly down-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly decreased, the activity of DRGn was significantly increased, the apoptosis rate was significantly decreased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly decreased (all P<0.05), and the above changes were most obvious in the Gen2+TSA+LPS group. Compared with the Gen2+LPS group, the expression levels of HDAC6 mRNA and protein, TLR4 and MyD88 protein expression levels in DRGn of the Gen2+pcDNA-HDAC6+LPS group were significantly up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly increased, the activity of DRGn was significantly decreased, and the apoptosis rate was significantly increased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly increased (all P<0.05).
CONCLUSIONS
Gen can alleviate LPS-induced DRGn inflammatory injury in rats, which might be related to down-regulating the expression of HDAC6 and further inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway.
Animals
;
Ganglia, Spinal
;
Genistein/pharmacology*
;
Histone Deacetylase 6/metabolism*
;
Interleukin-6/metabolism*
;
Lipopolysaccharides
;
Myeloid Differentiation Factor 88
;
NF-kappa B/metabolism*
;
Neurons/metabolism*
;
RNA, Messenger
;
Rats
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*

Result Analysis
Print
Save
E-mail