1.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
2.Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor.
Jia-Cheng SHEN ; Qin QI ; Dong HAN ; Yuan LU ; Rong HUANG ; Yi ZHU ; Lin-Shan ZHANG ; Xiu-di QIN ; Fang ZHANG ; Huan-Gan WU ; Hui-Rong LIU
Journal of Integrative Medicine 2023;21(2):194-204
OBJECTIVE:
This study was conducted to explore the mechanism of intestinal inflammation and barrier repair in Crohn's disease (CD) regulated by moxibustion through bile acid (BA) enterohepatic circulation and intestinal farnesoid X receptor (FXR).
METHODS:
Sprague-Dawley rats were randomly divided into control group, CD model group, mild moxibustion group and herb-partitioned moxibustion group. CD model rats induced by 2,4,6-trinitrobenzene sulfonic acid were treated with mild moxibustion or herb-partitioned moxibustion at Tianshu (ST25) and Qihai (CV6). The changes in CD symptoms were rated according to the disease activity index score, the serum and colon tissues of rats were collected, and the pathological changes in colon tissues were observed via histopathology. Western blot, immunohistochemistry (IHC) and immunofluorescence were used to evaluate the improvement of moxibustion on intestinal inflammation and mucosal barrier in CD by the BA-FXR pathway.
RESULTS:
Mild moxibustion and herb-partitioned moxibustion improved the symptoms of CD, inhibited inflammation and repaired mucosal damage to the colon in CD rats. Meanwhile, moxibustion could improve the abnormal expression of BA in the colon, liver and serum, downregulate the expression of interferon-γ and upregulate the expression of FXR mRNA, and inhibit Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) mRNA. The IHC results showed that moxibustion could upregulate the expression of FXR and mucin2 and inhibit TLR4 expression. Western blot showed that moxibustion inhibited the protein expression of TLR4 and MyD88 and upregulated the expression of FXR. Immunofluorescence image analysis showed that moxibustion increased the colocalization sites and intensity of FXR with TLR4 or nuclear factor-κB p65. In particular, herb-partitioned moxibustion has more advantages in improving BA and upregulating FXR and TLR4 in the colon.
CONCLUSION
Mild moxibustion and herb-partitioned moxibustion can improve CD by regulating the enterohepatic circulation stability of BA, activating colonic FXR, regulating the TLR4/MyD88 pathway, inhibiting intestinal inflammation and repairing the intestinal mucosal barrier. Herb-partitioned moxibustion seems to have more advantages in regulating BA enterohepatic circulation and FXR activation. Please cite this article as: Shen JC, Qi Q, Han D, Lu Y, Huang R, Zhu Y, Zhang LS, Qin XD, Zhang F, Wu HG, Liu HR. Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor. J Integr Med. 2023; 21(2): 194-204.
Rats
;
Animals
;
Crohn Disease/pathology*
;
Moxibustion/methods*
;
Toll-Like Receptor 4/metabolism*
;
Rats, Sprague-Dawley
;
Myeloid Differentiation Factor 88/metabolism*
;
Colitis
;
Inflammation
;
Enterohepatic Circulation
;
RNA, Messenger/metabolism*
3.Fine Particulate Matter Exposure Induces Toxicity by Regulating Nuclear Factor-κB/toll-like Receptor 4/myeloid Differentiation Primary Response Signaling Pathways in RAW264.7 Cells.
Mei Zhu ZHENG ; Yao LU ; Ting Ting LU ; Peng QIN ; Yu Qiu LI ; Dong Fang SHI
Biomedical and Environmental Sciences 2023;36(5):458-462
4.Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials.
Zifan ZHAO ; Qin ZHAO ; Hu CHEN ; Fanfan CHEN ; Feifei WANG ; Hua TANG ; Haibin XIA ; Yongsheng ZHOU ; Yuchun SUN
International Journal of Oral Science 2023;15(1):31-31
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Biocompatible Materials/metabolism*
;
HMGB1 Protein/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Bone Substitutes/metabolism*
;
Dendritic Cells/metabolism*
5.Effects of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination on inflammatory responses in atherosclerotic mice.
Wan-Yu LI ; Qing-Yin LONG ; Xin-Ying FU ; Lu MA ; Wei TAN ; Yan-Ling LI ; Shun-Zhou XU ; Wei ZHANG ; Chang-Qing DENG
China Journal of Chinese Materia Medica 2023;48(15):4164-4172
The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.
Mice
;
Male
;
Animals
;
NF-kappa B/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
NF-KappaB Inhibitor alpha/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Cholesterol, LDL
;
Hyperplasia
;
Mice, Inbred C57BL
;
Atherosclerosis/genetics*
;
Apolipoproteins E/therapeutic use*
;
RNA, Messenger
6.Formononetin improves cognitive behavior in aging rats with chronic unpredictable mild in hippocampal tissue stress by blocking the NF-κB pathway and inhibiting the release of inflammatory factors.
Chunhua ZHANG ; Lingyun HU ; Yun XIE ; Jing WEN ; Yadi CHEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):610-616
Objective To investigate the effects of formononetin (FMN) on cognitive behavior and inflammation in aging rats with chronic unpredictable mild stress (CUMS). Methods SD rats aged about 70 weeks were divided into healthy control group, CUMS model group, CUMS combined with 10 mg/kg FMN group, CUMS combined with 20 mg/kg FMN group and CUMS combined with 1.8 mg/kg fluoxetine hydrochloride (Flu) group. Except for healthy control group, other groups were stimulated with CUMS and administered drugs for 28 days. Sugar water preference, forced swimming experiment and open field experiment were used to observe the emotional behavior of rats in each group. HE staining was used to observe the pathological injury degree of brain equine area. The contents of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were detected by the kit. The apoptosis was tested by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) in the brain tissue. The levels of tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS) and interleukin 6 (IL-6) in peripheral blood were measured by ELISA. Western blot analysis was used to detect Bcl2, Bcl2 associated X protein (BAX), cleaved caspase-9, cleaved caspase-3, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in brain tissues. Results Compared with CUMS model group, sugar water consumption, open field activity time, open field travel distance and swimming activity time significantly increased in the CUMS combined with 20 mg/kg FMN group and the CUMS combined with 1.8 mg/kg Flu group. The number of new outarm entry increased significantly, while the number of initial arm entry and other arm entry decreased significantly. The pathological damage of brain equine area was alleviated, and the contents of 5-HT and 5-HIAA were significantly increased. The ratio of BAX/Bcl2 and the expression of cleaved caspase-9 and cleaved caspase-3 protein as well as the number of apoptotic cells were significantly decreased. The contents of TNF-α, iNOS and IL-6 were significantly decreased. The protein levels of TLR4, MyD88 and p-NF-κB p65 were significantly decreased. Conclusion FMN can inhibit the release of inflammatory factors by blocking NF-κB pathway and improve cognitive and behavioral ability of CUMS aged rats.
Rats
;
Animals
;
Horses
;
NF-kappa B/metabolism*
;
Signal Transduction
;
bcl-2-Associated X Protein/metabolism*
;
Toll-Like Receptor 4/metabolism*
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Interleukin-6/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Myeloid Differentiation Factor 88
;
Hydroxyindoleacetic Acid/pharmacology*
;
Serotonin/metabolism*
;
Rats, Sprague-Dawley
;
Hippocampus/metabolism*
;
Cognition
7.Inhibitory Effect of Cinobufotalin on Macrophage Inflammatory Factor Storm and Its Mechanism.
Xi-Xi LIU ; Chen-Cheng LI ; Jing YANG ; Wei-Guang ZHANG ; Re-Ai-La JIANATI ; Xiao-Li ZHANG ; Zu-Qiong XU ; Xing-Bin DAI ; Fang TIAN ; Bi-Qing CHEN ; Xue-Jun ZHU
Journal of Experimental Hematology 2023;31(3):880-888
OBJECTIVE:
To investigate the inflammatory effects of Cinobufotalin on monocytes in resting state and macrophages in activated state and its molecular mechanism.
METHODS:
THP-1 cells were stimulated with Phorbol 12-myristate 13-acetate to induce differentiation into macrophages. Lipopolysaccharides was added to activate macrophages in order to establish macrophage activation model. Cinobufotalin was added to the inflammatory cell model for 24 h as a treatment. CCK-8 was used to detect cell proliferation, Annexin V /PI double staining flow cytometry was used to detect cell apoptosis, flow cytometry was used to detect macrophage activation, and cytometric bead array was used to detect cytokines. Transcriptome sequencing was used to explore the gene expression profile regulated by Cinobufotalin. Changes in the significantly regulated molecules were verified by real-time quantitative polymerase chain reaction and Western blot.
RESULTS:
1∶25 concentration of Cinobufotalin significantly inhibited the proliferation of resting monocytes(P<0.01), and induced apoptosis(P<0.01), especially the activated macrophages(P<0.001, P<0.001). Cinobufotalin significantly inhibited the activation of macrophages, and significantly down-regulated the inflammatory cytokines(IL-6, TNF-α, IL-1β, IL-8) released by activated macrophages(P<0.001). Its mechanism was achieved by inhibiting TLR4/MYD88/P-IκBa signaling pathway.
CONCLUSION
Cinobufotalin can inhibit the inflammatory factors produced by the over-activation of macrophages through TLR4/MYD88/P-IκBa pathway, which is expected to be applied to the treatment and research of diseases related to the over-release of inflammatory factors.
Humans
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/genetics*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Lipopolysaccharides/pharmacology*
;
NF-kappa B
8.Leaky Gut Plays a Critical Role in the Pathophysiology of Autism in Mice by Activating the Lipopolysaccharide-Mediated Toll-Like Receptor 4-Myeloid Differentiation Factor 88-Nuclear Factor Kappa B Signaling Pathway.
Fang LI ; Haoran KE ; Siqi WANG ; Wei MAO ; Cexiong FU ; Xi CHEN ; Qingqing FU ; Xiaori QIN ; Yonghua HUANG ; Bidan LI ; Shibing LI ; Jingying XING ; Minhui WANG ; Wenlin DENG
Neuroscience Bulletin 2023;39(6):911-928
Increased intestinal barrier permeability, leaky gut, has been reported in patients with autism. However, its contribution to the development of autism has not been determined. We selected dextran sulfate sodium (DSS) to disrupt and metformin to repair the intestinal barrier in BTBR T+tf/J autistic mice to test this hypothesis. DSS treatment resulted in a decreased affinity for social proximity; however, autistic behaviors in mice were improved after the administration of metformin. We found an increased affinity for social proximity/social memory and decreased repetitive and anxiety-related behaviors. The concentration of lipopolysaccharides in blood decreased after the administration of metformin. The expression levels of the key molecules in the toll-like receptor 4 (TLR4)-myeloid differentiation factor 88 (MyD88)-nuclear factor kappa B (NF-κB) pathway and their downstream inflammatory cytokines in the cerebral cortex were both repressed. Thus, "leaky gut" could be a trigger for the development of autism via activation of the lipopolysaccharide-mediated TLR4-MyD88-NF-κB pathway.
Mice
;
Animals
;
NF-kappa B
;
Myeloid Differentiation Factor 88/metabolism*
;
Lipopolysaccharides/pharmacology*
;
Toll-Like Receptor 4/metabolism*
;
Autistic Disorder/metabolism*
;
Signal Transduction/physiology*
9.Exploring the detection of MYD88 mutation in patients with Waldenström macroglobulinemia by different methods and specimens.
Yi TAO ; Zeng Kai PAN ; Shuo WANG ; Li WANG ; Wei Li ZHAO
Chinese Journal of Hematology 2022;43(5):388-392
Objective: To improve the positivity rate and accuracy of MYD88 mutation detection in patients with Waldenström macroglobulinemia (WM) . Methods: MYD88 mutation status was retrospectively evaluated in 66 patients diagnosed with WM in Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from June 2017 to June 2021. The positivity rate and accuracy of the different methods and specimens for MYD88 mutation detection were analyzed. Results: MYD88 mutations were detected in 51 of 66 patients with WM, with an overall positivity rate of 77%. The positivity rate of the next-generation sequencing (NGS) or allele-specific polymerase chain reaction (AS-PCR) was significantly higher than that of the first-generation Sanger sequencing (84% vs 71% vs 46%, P<0.05) . For the different specimens, the positivity rate for the lymph nodes or bone marrow was significantly higher than that of peripheral blood (79% vs 84% vs 52%, P<0.05) . The positivity rate of the MYD88 mutation in the lymph nodes, bone marrow, and peripheral blood determined by NGS was 86%, 90%, and 67%, respectively. The positivity rate in the lymph nodes, bone marrow, and peripheral blood detected by AS-PCR was 78%, 81%, and 53%, respectively. Thirty-nine patients with WM underwent ≥ 2 MYD88 mutation detections. The final MYD88 mutational status for each patient was used as the standard to determine the accuracy of the different methods and in different specimens. The accuracy of MYD88 mutation detection in the lymph nodes (n=18) and bone marrow (n=13) by NGS was significantly higher than that in the peripheral blood (n=4) (100% vs 100% vs 75%, P<0.05) . There was no statistically significant difference in the accuracy of MYD88 mutation detection by AS-PCR in the lymph nodes (n=15) , bone marrow (n=11) , or peripheral blood (n=16) (93% vs 91% vs 88%, P>0.05) . Conclusions: In the detection of the MYD88 mutation in patients diagnosed with WM, NGS or AS-PCR is more sensitive than Sanger sequencing. Lymph nodes and bone marrow specimens are better than peripheral blood specimens.
China
;
Humans
;
Lymphoma, B-Cell
;
Mutation
;
Myeloid Differentiation Factor 88/metabolism*
;
Retrospective Studies
;
Waldenstrom Macroglobulinemia/genetics*
10.Electroacupuncture Attenuates Immune-Inflammatory Response in Hippocampus of Rats with Vascular Dementia by Inhibiting TLR4/MyD88 Signaling Pathway.
Yu BU ; Wen-Shuang LI ; Ji LIN ; Yu-Wei WEI ; Qiu-Ying SUN ; Shi-Jie ZHU ; Zhong-Sheng TANG
Chinese journal of integrative medicine 2022;28(2):153-161
OBJECTIVE:
To investigate whether electroacupuncture (EA) alleviates cognitive impairment by suppressing the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway, which triggers immune-inflammatory responses in the hippocampus of rats with vascular dementia (VaD).
METHODS:
The experiments were conducted in 3 parts and in total the Sprague-Dawley rats were randomly divided into 8 groups by a random number table, including sham, four-vessel occlusion (4-VO), 4-VO+EA, 4-VO+non-EA, sham+EA, 4-VO+lipopolysaccharide (LPS), 4-VO+LPS+EA, and 4-VO+TAK-242 groups. The VaD model was established by the 4-VO method. Seven days later, rats were treated with EA at 5 acupoints of Baihui (DV 20), Danzhong (RN 17), Geshu (BL 17), Qihai (RN 6) and Sanyinjiao (SP 6), once per day for 3 consecutive weeks. Lymphocyte subsets, lymphocyte transformation rates, and inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor α(TNF-α) were measured to assess immune function and inflammation in VaD rats. Transmission electron microscopy was used to observe the ultrastructure of nerve cells in the hippocampus. The levels of TLR4, MyD88, IL-6, and TNF-α were detected after EA treatment. TLR4/MyD88 signaling and cognitive function were also assessed after intracerebroventricular injection of TLR4 antagonist TAK-242 or TLR4 agonist LPS with or without EA.
RESULTS:
Compared with the 4-VO group, EA notably improved immune function of rats in the 4-VO+EA group, inhibited the protein and mRNA expressions of TLR4 and MyD88 in the hippocampus of rats, reduced the expressions of serum IL-6 and TNF-α (all P<0.05 or P<0.01), and led to neuronal repair in the hippocampus. There were no significant differences between the 4-VO+LPS+EA and 4-VO+EA groups, nor between the 4-VO+TAK-242 and 4-VO+EA groups (P>0.05).
CONCLUSIONS
EA attenuated cognitive impairment associated with immune inflammation by inhibition of the TLR4/MyD88 signaling pathway. Thus, EA may be a promising alternative therapy for the treatment of VaD.
Animals
;
Dementia, Vascular/therapy*
;
Electroacupuncture
;
Hippocampus/metabolism*
;
Immunity
;
Myeloid Differentiation Factor 88
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Toll-Like Receptor 4/metabolism*

Result Analysis
Print
Save
E-mail