1.Potassium dehydroandrographolide succinate regulates the MyD88/CDH13 signaling pathway to enhance vascular injury-induced pathological vascular remodeling.
Qiru GUO ; Jiali LI ; Zheng WANG ; Xiao WU ; Zhong JIN ; Song ZHU ; Hongfei LI ; Delai ZHANG ; Wangming HU ; Huan XU ; Lan YANG ; Liangqin SHI ; Yong WANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):62-74
Pathological vascular remodeling is a hallmark of various vascular diseases. Previous research has established the significance of andrographolide in maintaining gastric vascular homeostasis and its pivotal role in modulating endothelial barrier dysfunction, which leads to pathological vascular remodeling. Potassium dehydroandrographolide succinate (PDA), a derivative of andrographolide, has been clinically utilized in the treatment of inflammatory diseases precipitated by viral infections. This study investigates the potential of PDA in regulating pathological vascular remodeling. The effect of PDA on vascular remodeling was assessed through the complete ligation of the carotid artery in C57BL/6 mice. Experimental approaches, including rat aortic primary smooth muscle cell culture, flow cytometry, bromodeoxyuridine (BrdU) incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay, and Matrigel-based tube formation assay, were employed to evaluate the influence of PDA on the proliferation and motility of smooth muscle cells (SMCs). Molecular docking simulations and co-immunoprecipitation assays were conducted to examine protein interactions. The results revealed that PDA exacerbates vascular injury-induced pathological remodeling, as evidenced by enhanced neointima formation. PDA treatment significantly increased the proliferation and migration of SMCs. Further mechanistic studies disclosed that PDA upregulated myeloid differentiation factor 88 (MyD88) expression in SMCs and interacted with T-cadherin (CDH13). This interaction augmented proliferation, migration, and extracellular matrix deposition, culminating in pathological vascular remodeling. Our findings underscore the critical role of PDA in the regulation of pathological vascular remodeling, mediated through the MyD88/CDH13 signaling pathway.
Mice
;
Rats
;
Animals
;
Myeloid Differentiation Factor 88/metabolism*
;
Vascular Remodeling
;
Cell Proliferation
;
Vascular System Injuries/pathology*
;
Carotid Artery Injuries/pathology*
;
Molecular Docking Simulation
;
Muscle, Smooth, Vascular
;
Cell Movement
;
Mice, Inbred C57BL
;
Signal Transduction
;
Succinates/pharmacology*
;
Potassium/pharmacology*
;
Cells, Cultured
;
Diterpenes
;
Cadherins
2.Effect of Inhibiting SIX1 Expression on Drug-resistance of Acute Myeloid Leukemia Cell Line HL-60/ADR Cells.
Li-Yuan LI ; Zi-Yuan NIE ; Xiao-Yan ZHANG ; Jian-Min LUO ; Lin YANG ; Qian WANG
Journal of Experimental Hematology 2023;31(4):1038-1043
OBJECTIVE:
To establish HL-60 cells and adriamycin resistant HL-60 cells (H-60/ADR) in which the expression of homologous box gene 1 (SIX1) was inhibited, and investigate the effect of inhibiting the expression of SIX1 on the drug resistance.
METHODS:
Lentivirus was used to transfect HL-60 and HL-60/ADR cells, and the cell lines stably inhibiting the expression of SIX1 were screened by puromycin. CCK-8 assay was used to detect the proliferation ability of cells in each group, apoptosis kit was used to detect the cell apoptosis, and real-time quantitative PCR was used to detect the expression level of drug-resistant related genes.
RESULTS:
HL-60 and HL-60/ADR stably transfected cell lines with down-regulation of SIX1 expression were successfully constructed. Compared with control group, the inhibition of SIX1 expression significantly inhibited the proliferation of HL-60 and HL-60/ADR cells (P <0.05), increased the apoptosis rate (P <0.05), and the sensitivity of cells to adriamycin increased after inhibition of SIX1 expression.
CONCLUSION
Inhibition of SIX1 expression can improve cell sensitivity to adriamycin, and its role in reversing drug resistance may be related to the promotion of apoptosis gene expression.
Humans
;
HL-60 Cells
;
Drug Resistance, Neoplasm/genetics*
;
Leukemia, Myeloid, Acute
;
Doxorubicin/pharmacology*
;
Apoptosis
;
Cell Proliferation
;
Homeodomain Proteins/genetics*
3.Effects of Methionine Restriction on Proliferation, Cell Cycle, and Apoptosis of Human Acute Leukemia Cells.
Yu-Jie HE ; Si-Shu YU ; Bin ZHANG ; Mei-Rong LI ; Li-Jun XU ; Long-Ming LIANG ; Zheng-Gang ZHAO ; Zi-Jian ZHAO ; Su-Jin ZHOU ; Fang-Hong LI
Journal of Experimental Hematology 2023;31(5):1290-1295
OBJECTIVE:
To investigate the effects of methionine restriction on proliferation, cell cycle and apoptosis of human acute leukemia cells.
METHODS:
Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of methionine restriction on HL-60 and Jurkat cells proliferation. The effect of methionine restriction on cell cycle of HL-60 and Jurkat cells was examined by PI staining. Annexin V-FITC / PI double staining was applied to detect apoptosis of HL-60 and Jurkat cells following methionine restriction. The expression of cell cycle-related proteins cyclin B1, CDC2 and apoptosis-related protein Bcl-2 was evaluated by Western blot assay.
RESULTS:
Methionine restriction significantly inhibited the proliferation of HL-60 and Jurkat cells in a time-dependent manner (HL-60: r =0.7773, Jurkat: r =0.8725), arrested the cells at G2/M phase (P < 0.001), and significantly induced apoptosis of HL-60 and Jurkat cells (HL-60: P < 0.001; Jurkat: P < 0.05). Furthermore, Western blot analysis demonstrated that methionine restriction significantly reduced the proteins expression of Cyclin B1 (P < 0.05), CDC2 (P < 0.01) and Bcl-2 (P < 0.001) in HL-60 and Jurkat cells.
CONCLUSION
Acute leukemia cells HL-60 and Jurkat exhibit methionine dependence. Methionine restriction can significantly inhibit the proliferation, promote cell cycle arrest and induce apoptosis of HL-60 and Jurkat cells, which suggests that methionine restriction may be a potential therapeutic strategy for acute leukemia.
Humans
;
Cyclin B1/pharmacology*
;
Cell Proliferation
;
Methionine/pharmacology*
;
Cell Cycle
;
Apoptosis
;
Leukemia, Myeloid, Acute
;
Cell Division
;
Cell Cycle Proteins
;
Jurkat Cells
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
HL-60 Cells
4.Chemotherapy Combined with Venetoclax Followed by Allo-Hematopoietic Stem Cell Transplantation for Treatment of Blastic Plasmacytoid Dendritic Cell Neoplasm.
Ping CHENG ; Lan-Lan WANG ; Qiu-Xiang WANG ; Jun GUAN ; Ying ZHOU ; Bin HU ; Yan FENG ; Liang ZOU ; Hui CHENG
Journal of Experimental Hematology 2023;31(5):1531-1536
OBJECTIVE:
To investigate the efficacy and safety of chemotherapy combined with venetoclax followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) for the treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN).
METHODS:
The clinical data of 3 patients with BPDCN undergoing allo-HSCT in Department of Hematology, Wuhan First Hospital from July 2017 to November 2021 were collected and retrospectively analyzed.
RESULTS:
Among the 3 patients, there were 1 male and 2 females, aged 27-52 years old. Skin lesions were observed during initial diagnosis, and it could also be characterized by acute leukemia. Characteristic molecular markers of tumor cells, such as CD4, CD56, CD123, and CD303 were positive. In addition, the expression detection of Bcl-2 in 3 patients were positive. Chemotherapy combined with venetoclax in the initial induction of chemotherapy (1 case) or disease recurrence and progress (2 cases) was performed. There were 2 cases evaluated as complete remission (CR) and 1 case as partial remission (PR) before allo-HSCT. The patients all received a nonmyeloablative conditioning without total body irradiation (TBI). The prevention programme of graft-versus-host disease (GVHD) was antithymocyte globulin + mycophenolate mofetil + cyclosporin A/FK506 ± methotrexate. The number of mononuclear cell (MNC) count was (16.73-18.35)×108/kg, and CD34+ cell count was (3.57-4.65)×106/kg. The 3 patients were evaluated as CR after allo-HSCT (+21 to +28 d), the donor-recipient chimerism rate was 100%, and Ⅲ-Ⅳ GVHD was not observed. One patient died at +50 d after transplantation, two patients were followed up for 28 months and 15 months, respectively, and achieved disease-free survival (DFS).
CONCLUSIONS
BPDCN is a highly aggressive malignant tumor with poor prognosis. Chemotherapy combined with venetoclax followed by allo-HSCT may lead to long-term DFS or even cure. Post-transplant maintenance is still unclear.
Female
;
Humans
;
Male
;
Adult
;
Middle Aged
;
Retrospective Studies
;
Hematopoietic Stem Cell Transplantation/adverse effects*
;
Acute Disease
;
Graft vs Host Disease/prevention & control*
;
Myeloproliferative Disorders
;
Leukemia, Myeloid, Acute/pathology*
;
Dendritic Cells
5.Effects of circ-SFMBT2 on Proliferation, Migration and Invasion of Acute Myeloid Leukemia Cells by Regulating miR-491-5p/HOXA9 Axis.
Yan LI ; Li-Huan SHI ; Xin XIE ; Peng-Kai FAN
Journal of Experimental Hematology 2023;31(6):1599-1607
OBJECTIVE:
To explore the effects and molecular mechanism of circ-SFMBT2 on the proliferation, migration and invasion of acute myeloid leukemia (AML) cells.
METHODS:
Bone marrow samples from 35 pediatric AML patients and 35 healthy controls in Henan Provincial Children's Hospital from April 2015 to April 2017 and human bone marrow stromal cell lines (HS-5) and AML cell lines (HL-60, THP-1, U-937 and Kasumi-1) were collected. The expressions of circ-SFMBT2, miR-491-5p and homeobox A9 (HOXA9) in bone marrow samples and cells were detected by RT-qPCR and Western blot. The Pearson method was used to analyze the correlation of circ-SFMBT2, miR-491-5p and HOXA9 mRNA expression levels in bone marrow samples of AML patients. HL-60 cells were cultured in vitro and divided into 5 groups: Control, si-NC, si-circ-SFMBT2, si-circ-SFMBT2+anti-NC and si-circ-SFMBT2+anti-miR-491-5p, HL-60 cells were transfected with si-NC, si-circ-SFMBT2, anti-NC, and miR-491-5p inhibitor with Lipofectamine™ 3000. RT-qPCR and Western blot were performed to detect the expression levels of circ-SFMBT2, miR-491-5p and HOXA9 in cells of each group. The proliferation activity of HL-60 cells in each group was detected by CCK-8 assay at 24, 48 and 72 h after transfection, respectively. The apoptosis rate was detected by flow cytometry. The migration and invasion abilities of cells were detected by Transwell assay. The regulatory roles of circ-SFMBT2, miR-491-5p and HOXA9 in AML cells were verified by dual-luciferase reporter gene assay, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) experiments.
RESULTS:
The expression levels of circ-SFMBT2 and HOXA9 mRNA were increased in bone marrow samples and cell lines (HL-60, THP-1, U-937 and Kasumi-1) of children with AML (P <0.001), while the expression level of miR-491-5p was significantly decreased (P <0.001). Pearson correlation analysis showed that the expression levels of circ-SFMBT2 and miR-491-5p in bone marrow samples of AML children were negatively correlated (r =-0.905), miR-491-5p was also negatively correlated with HOXA9 mRNA (r =-0.930), while the expression levels of HOXA9 mRNA and circ-SFMBT2 was positively correlated (r =0.911). The overall survival rate of AML children with high expression of circ-SFMBT2 was significantly decreased than those with low expression of circ-SFMBT2 (P <0.05). Silencing of circ-SFMBT2 could greatly up-regulate the expression of miR-491-5p, decrease the expression of HOXA9, inhibit the proliferation, migration and invasion of AML cells, and promote cell apoptosis (P <0.05). Down-regulation of miR-491-5p expression greatly attenuated the inhibitory effects of circ-SFMBT2 silencing on cell proliferation, migration and invasion (P <0.05). Dual-luciferase reporter gene assay, RNA pull-down and RIP experiments confirmed that circ-SFMBT2 could target miR-491-5p and negatively regulate the expression of miR-491-5p in AML, and HOXA9 was the target of miR-491-5p.
CONCLUSION
Silencing of circ-SFMBT2 may inhibit the proliferation, migration and invasion of AML cells by regulating the miR-491-5p/HOXA9 axis.
Child
;
Humans
;
Cell Line, Tumor
;
Cell Proliferation
;
Genes, Homeobox
;
HL-60 Cells
;
Leukemia, Myeloid, Acute
;
Luciferases
;
MicroRNAs
;
Repressor Proteins
;
RNA, Messenger
;
RNA, Circular/genetics*
6.Research Progress of Chimeric Antigen Receptor Modified NK Cells in the Treatment of Acute Myeloid Leukemia --Review.
Journal of Experimental Hematology 2023;31(6):1905-1909
Chimeric Antigen Receptor (CAR) is a research hotspot in the field of cellular immunotherapy in recent years, and CAR-T cells therapy are developing rapidly in hematological malignant tumors, but their clinical application is still limited by related risks. It is particularly important to find more optimized immunoreactive cells. Natural killer (NK) cells, as key effector cells of innate immunity, can kill tumor or infected cells quickly without prior sensitization. Autologous or allogeneic NK cell infusion has become an effective cell therapy for acute myeloid leukemia (AML). CAR-NK cells combine the advantages of CAR targeting tumor specific antigens and enhancing immune cells activity with the innate antitumor function of NK cells to enhance the targeting and lytic activity of NK cells to AML primordial cells. At present, most of the CAR-NK treatments for AML are still in the stage of specific target screening and verification. This article reviews the latest research progress of CAR-NK cell therapy in the field of AML therapy.
Humans
;
Receptors, Chimeric Antigen
;
Killer Cells, Natural
;
Leukemia, Myeloid, Acute/drug therapy*
;
Immunotherapy, Adoptive
;
Immunotherapy
7.Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials.
Zifan ZHAO ; Qin ZHAO ; Hu CHEN ; Fanfan CHEN ; Feifei WANG ; Hua TANG ; Haibin XIA ; Yongsheng ZHOU ; Yuchun SUN
International Journal of Oral Science 2023;15(1):31-31
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Biocompatible Materials/metabolism*
;
HMGB1 Protein/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Bone Substitutes/metabolism*
;
Dendritic Cells/metabolism*
8.Effect of Scutellarin on Proliferation of Acute Myeloid Leukemia Cells and Its Related Mechanism.
Jun CHEN ; Yi-Feng CAI ; Min SHAO ; Hui CONG
Journal of Experimental Hematology 2023;31(2):358-363
OBJECTIVE:
To investigate the effect of scutellarin (SCU) on proliferation, cell cycle and apoptosis of acute myeloid leukemia (AML) cells and its related molecular mechanism.
METHODS:
Human AML HL-60 cells were cultured in vitro. The cells were treated with SCU at the concentration of 0, 2, 4, 8, 16, 32, 64 μmol/L, and the inhibition rate of cell proliferation was detected by CCK-8 method. Then HL-60 cells were treated with SCU at the concentration of 4, 8, 16 μmol/L, and the negative control group (NC group) was set. The cell cycle distribution and apoptosis were detected by flow cytometry, and the expression of cell cycle, apoptosis and JAK2/STAT3 pathway related proteins were detected by Western blot.
RESULTS:
SCU significantly inhibited the proliferation of HL-60 cells in a concentration- and time-dependent manner(r =0.958,r =0.971). Compared with NC group, the proportion of cells in G0/G1 phase and apoptosis rate of HL-60 cells in 4, 8, 16 μmol/L SCU group were significantly increased, and the proportion of cells in S phase was significantly decreased (P <0.05). The relative protein expression levels of p21, p53, caspase-3 and Bax were significantly increased, while the relative protein expression levels of CDK2, cyclin E and Bcl-2 were significantly decreased (P <0.05). The ratio of p-JAK2/JAK2 and p-STAT3/STAT3 were significantly decreased (P <0.05). The changes of above-mentioned indexes were concentration dependent.
CONCLUSION
SCU can inhibit the proliferation of AML cells, induce cell cycle arrest and apoptosis, and its mechanism may be related to the regulation of JAK2/STAT3 signaling pathway.
Humans
;
Apoptosis
;
Signal Transduction
;
Leukemia, Myeloid, Acute
;
HL-60 Cells
;
Cell Proliferation
;
Cell Line, Tumor
9.The Effects and Regulatory Mechanism of Targeting CXC Chemokine Receptor 1/2 Combined with Ara-C on the Malignant Biological Behaviors of U937 Cells of Acute Myeloid Leukemia.
Yan-Quan LIU ; Jian-Zhen SHEN ; Yue YIN ; Yu-Ting CHEN ; Hui YANG ; Huan-Wen TANG
Journal of Experimental Hematology 2023;31(2):364-376
OBJECTIVE:
To investigate and analyze the effect of CXC chemokine receptor 1/2 (CXCR1/2) targeting inhibitor Reparixin combined with cytarabine (Ara-C) on the malignant biological behaviors of acute myeloid leukemia cells and its effect on the expression of the CXCR family, while exploring the accompanying molecular mechanism, providing scientific basis and reference for new molecular markers and targeted therapy for AML.
METHODS:
Acute myeloid leukemia U937 cells were treated with different concentrations of Reparixin, Ara-C alone or in combination, and the cell morphology was observed under an inverted microscope; Wright-Giemsa staining was used to detect cell morphological changes; CCK-8 method was used to detect cell proliferation; the ability of cell invasion was detected by Transwell chamber method; the ability of colony formation was detected by colony formation assay; cell apoptosis was detected by Hoechst 33258 fluorescent staining and Annexin V/PI double-staining flow cytometry; monodansylcadaverine(MDC) staining was used to detect cell autophagy; the expression of apoptosis, autophagy and related signaling pathway proteins was detected by Western blot and the expression changes of CXCR family were detected by real-time quantitative polymerase chain reaction (qRT-PCR).
RESULTS:
Reparixin could inhibit the proliferation, invasion, migration and clone formation ability of U937 cells. Compared with the single drug group, when U937 cells were intervened by Reparixin combined with Ara-C, the malignant biological behaviors such as proliferation, invasion and colony formation were significantly decreased, and the levels of apoptosis and autophagy were significantly increased (P<0.01). After Reparixin combined with Ara-C intervenes in U937 cells, it can up-regulate the expression of the pro-apoptotic protein Bax and significantly down-regulate the expression of the anti-apoptotic protein Bcl-2, and also hydrolyze and activate Caspase-3, thereby inducing cell apoptosis. Reparixin combined with Ara-C could up-regulate the expressions of LC3Ⅱ and Beclin-1 proteins in U937 cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P<0.01). MDC result showed that the green granules of vesicles increased significantly, and a large number of broken cells were seen (P<0.01). Reparixin combined with Ara-C can significantly inhibit the phosphorylation level of PI3K, AKT and NF-κB signaling molecule, inhibit the malignant biological behavior of cells by inhibiting the activation of PI3K/AKT/NF-κB pathway, and induce programmed cell death. Ara-C intervention in U937 cells had no effect on the expression of CXCR family (P>0.05). The expression of CXCR1, CXCR2, and CXCR4 mRNA could be down-regulated by Reparixin single-agent intervention in U937 cells (P<0.05), and the expression of CXCR2 was more significantly down-regulated than the control group and other CXCRs (P<0.01). When Reparixin and Ara-C intervened in combination, the down-regulated levels of CXCR1 and CXCR2 were more significant than those in the single-drug group (P<0.01), while the relative expressions of CXCR4 and CXCR7 mRNA had no significant difference compared with the single-drug group (P>0.05).
CONCLUSION
Reparixin combined with Ara-C can synergistically inhibit the malignant biological behaviors of U937 cells such as proliferation, invasion, migration and clone formation, and induce autophagy and apoptosis. The mechanism may be related to affecting the proteins expression of Bcl-2 family and down-regulating the proteins expression of CXCR family, while inhibiting the PI3K/AKT/NF-κB signaling pathway.
Humans
;
U937 Cells
;
Cytarabine/therapeutic use*
;
Receptors, Interleukin-8A
;
NF-kappa B
;
Proto-Oncogene Proteins c-akt
;
Phosphatidylinositol 3-Kinases
;
Leukemia, Myeloid, Acute/genetics*
;
Apoptosis
;
Cell Proliferation
;
Apoptosis Regulatory Proteins
;
Proto-Oncogene Proteins c-bcl-2
;
RNA, Messenger
;
Cell Line, Tumor
10.Establishment of leukemia cell model with inducible AML1-ETO expression and its effect on fatty acid metabolism in leukemia cells.
Wan Qing XIE ; Xue YANG ; Run Xia GU ; Zheng TIAN ; Hai Yan XING ; Ke Jing TANG ; Qing RAO ; Shao Wei QIU ; Min WANG ; Jian Xiang WANG
Chinese Journal of Hematology 2023;44(5):366-372
Objective: To investigate the effect of the AML1-ETO (AE) fusion gene on the biological function of U937 leukemia cells by establishing a leukemia cell model that induces AE fusion gene expression. Methods: The doxycycline (Dox) -dependent expression of the AE fusion gene in the U937 cell line (U937-AE) were established using a lentivirus vector system. The Cell Counting Kit 8 methods, including the PI and sidanilide induction, were used to detect cell proliferation, cell cycle-induced differentiation assays, respectively. The effect of the AE fusion gene on the biological function of U937-AE cells was preliminarily explored using transcriptome sequencing and metabonomic sequencing. Results: ①The Dox-dependent Tet-on regulatory system was successfully constructed to regulate the stable AE fusion gene expression in U937-AE cells. ②Cell proliferation slowed down and the cell proliferation rate with AE expression (3.47±0.07) was lower than AE non-expression (3.86 ± 0.05) after inducing the AE fusion gene expression for 24 h (P<0.05). The proportion of cells in the G(0)/G(1) phase in the cell cycle increased, with AE expression [ (63.45±3.10) %) ] was higher than AE non-expression [ (41.36± 9.56) %] (P<0.05). The proportion of cells expressing CD13 and CD14 decreased with the expression of AE. The AE negative group is significantly higher than the AE positive group (P<0.05). ③The enrichment analysis of the transcriptome sequencing gene set revealed significantly enriched quiescence, nuclear factor kappa-light-chain-enhancer of activated B cells, interferon-α/γ, and other inflammatory response and immune regulation signals after AE expression. ④Disorder of fatty acid metabolism of U937-AE cells occurred under the influence of AE. The concentration of the medium and short-chain fatty acid acylcarnitine metabolites decreased in cells with AE expressing, propionyl L-carnitine, wherein those with AE expression (0.46±0.13) were lower than those with AE non-expression (1.00±0.27) (P<0.05). The metabolite concentration of some long-chain fatty acid acylcarnitine increased in cells with AE expressing tetradecanoyl carnitine, wherein those with AE expression (1.26±0.01) were higher than those with AE non-expression (1.00±0.05) (P<0.05) . Conclusion: This study successfully established a leukemia cell model that can induce AE expression. The AE expression blocked the cell cycle and inhibited cell differentiation. The gene sets related to the inflammatory reactions was significantly enriched in U937-AE cells that express AE, and fatty acid metabolism was disordered.
Humans
;
U937 Cells
;
RUNX1 Translocation Partner 1 Protein
;
Leukemia/genetics*
;
Core Binding Factor Alpha 2 Subunit/genetics*
;
Oncogene Proteins, Fusion/genetics*
;
Leukemia, Myeloid, Acute/genetics*

Result Analysis
Print
Save
E-mail