1.Identification and expression of uridine diphosphate glycosyltransferase(UGT) gene family from Dendrobium officinale.
Jia-Dong CHEN ; Wu JIANG ; Min-Quan SONG ; Yin-Jun ZHOU ; Ya-Ping LI ; Xiao-Jing DUAN ; Zheng-Ming TAO
China Journal of Chinese Materia Medica 2023;48(7):1840-1850
Uridine diphosphate glycosyltransferase(UGT) is a highly conserved protein in plants, which usually functions in secondary metabolic pathways. This study used the Hidden Markov Model(HMM) to screen out members of UGT gene family in the whole genome of Dendrobium officinale, and 44 UGT genes were identified. Bioinformatics was used to analyze the structure, phylogeny, and promoter region components of D. officinale genes. The results showed that UGT gene family could be divided into four subfamilies, and UGT gene structure was relatively conserved in each subfamily, with nine conserved domains. The upstream promoter region of UGT gene contained a variety of cis-acting elements related to plant hormones and environmental factors, indicating that UGT gene expression may be induced by plant hormones and external environmental factors. UGT gene expression in different tissues of D. officinale was compared, and UGT gene expression was found in all parts of D. officinale. It was speculated that UGT gene played an important role in many tissues of D. officinale. Through transcriptome analysis of D. officinale mycorrhizal symbiosis environment, low temperature stress, and phosphorus deficiency stress, this study found that only one gene was up-regulated in all three conditions. The results of this study can help understand the functions of UGT gene family in Orchidaceae plants and provide a basis for further study on the molecular regulation mechanism of polysaccharide metabolism pathway in D. officinale.
Dendrobium/genetics*
;
Plant Growth Regulators
;
Glycosyltransferases/metabolism*
;
Gene Expression Profiling
;
Mycorrhizae
;
Phylogeny
;
Plant Proteins/metabolism*
2.Effects of mycorrhizal planting on small molecular chemical components of Dendrobium officinale.
Tong-Yao CHEN ; Xu ZENG ; Zhi-Xia MENG ; Li-Xia TIAN ; Ting-Ting SHAN ; Xiao-Mei CHEN ; Shun-Xing GUO
China Journal of Chinese Materia Medica 2023;48(17):4655-4662
This study aimed to provide a scientific basis for the application of the mycorrhizal planting technology of Dendrobium officinale by investigating the effects of mycorrhizal planting on the fingerprints of D. officinale and the content of six chemical components. Seventeen samples of D. officinale under mycorrhizal and conventional planting were collected from four regions, such as Jinhua of Zhejiang. The HPLC fingerprints were established to evaluate the similarity of the samples. The content of six chemical components of the samples was determined by HPLC. There were 15 common peaks in the fingerprints, and five of them were identified by marker compounds, which were naringenin, 4,4'-dihydroxy-3,5-dimethoxybibenzyl, 3,4'-dihydroxy-5-methoxybibenzyl, 3',4-dihydroxy-3,5'-dimethoxybibenzyl(gigantol), and 3,4-dihydroxy-4',5-dimethoxybibenzyl(DDB-2). The similarities of the fingerprints of mycorrhizal and conventional planting samples and the control fingerprint were in the ranges of 0.733-0.936 and 0.834-0.942, respectively. The influences of mycorrhizal planting on fingerprints were related to planting regions, the germplasm of D. officianle, and the amount of fungal agent. The content of six chemical components in the samples varied greatly, and the content of DDB-2 was the highest, ranging from 69.83 to 488.47 μg·g~(-1). The mycorrhizal planting samples from Chongming of Shanghai and Taizhou of Jiangsu showed an increase in the content of 5-6 components, while samples from Zhangzhou of Fujian and Jinhua of Zhejiang showed an increase in the content of 1-2 components. The results showed that mycorrhizal planting technology did not change the chemical profile of small molecular chemical components of D. officinale, but affected the content of chemical components such as bibenzyls, which has a good application prospect.
Dendrobium/chemistry*
;
Mycorrhizae
;
China
;
Chromatography, High Pressure Liquid
3.Arbuscular mycorrhizal fungi enhanced cadmium uptake in Photinia frase through altering root transcriptomes and root-associated microbial communities.
Chen LIU ; Yicheng LIN ; Bin GUO ; Ningyu LI ; Hua LI ; Qinglin FU
Chinese Journal of Biotechnology 2022;38(1):287-302
As a non-essential metal, cadmium (Cd) pollution poses severe threats to plant growth, environment, and human health. Phytoextraction using nursery stocks prior to their transplantation is a potential useful approach for bioremediation of Cd contaminated soil. A greenhouse pot experiment was performed to investigate the growth, Cd accumulation, profiles of transcriptome as well as root-associated microbiomes of Photinia frase in Cd-added soil, upon inoculation of two types of arbuscular mycorrhizal fungi (AMF) Sieverdingia tortuosa and Funneliformis mosseae. Compared with the control, inoculation of F. mosseae increased Cd concentrations in root, stem and leaf by 57.2%, 44.1% and 71.1%, respectively, contributing to a total Cd content of 182 μg/plant. KEGG pathway analysis revealed that hundreds of genes involved in 'Mitogen-activated protein kinase (MAPK) signaling pathway', 'plant hormone signal transduction', 'biosynthesis of secondary metabolites' and 'glycolysis/gluconeogenesis' were enriched upon inoculation of F. mosseae. The relative abundance of Acidobacteria was increased upon inoculation of S. tortuosa, while Chloroflexi and Patescibacteria were increased upon inoculation of F. mosseae, and the abundance of Glomerales increased from 23.0% to above 70%. Correlation analysis indicated that ethylene-responsive transcription factor, alpha-aminoadipic semialdehyde synthase, isoamylase and agmatine deiminase related genes were negatively associated with the relative abundance of Glomerales operational taxonomic units (OTUs) upon inoculation of F. mosseae. In addition, plant cysteine oxidase, heat shock protein, cinnamoyl-CoA reductase and abscisic acid receptor related genes were positively associated with the relative abundance of Patescibacteria OTUs upon inoculation of F. mosseae. These finding suggested that AMF can enhance P. frase Cd uptake by modulating plant gene expression and altering the structure of the soil microbial community. This study provides a theoretical basis for better understanding the relationship between root-associated microbiomes and root transcriptomes of P. frase, from which a cost-effective and environment-friendly strategy for phytoextraction of Cd in Cd-polluted soil might be developed.
Cadmium
;
Humans
;
Microbiota
;
Mycorrhizae
;
Photinia
;
Soil Pollutants
;
Transcriptome
4.Comparison and health risk assessment of mineral elements in stems and leaves of Dendrobium officinale cultivated with conventional method and mycorrhizal fungi.
Jia-Qi WANG ; Li-Xia TIAN ; Xiao-Mei CHEN ; Shun-Xing GUO
China Journal of Chinese Materia Medica 2022;47(21):5824-5831
This study aims to analyze the variation of the content of mineral elements in stems and leaves of Dendrobium officinale cultivated with conventional method and mycorrhizal fungi, which is expected to lay a basis for safety of stems and leaves of D. officinale. A total of 7 samples from Jiangsu, Fujian, Shanghai, and Zhejiang were collected, which were then cultivated with conventional method and mycorrhizal fungi, separately. The content of 17 mineral elements in stems and leaves was measured by inductively coupled plasma-mass spectrometry(ICP-MS), and the content changes of the mineral elements were analyzed. The health risks of Pb, Cd, Hg, and As in stems were assessed by target hazard quotient(THQ). The results showed that the content of polluting elements in stems and leaves of D. officinale was low, and the content in the plants cultivated with mycorrhizal fungi was reduced. The content of K, Ca, Mg, and P was high in stems and leaves of the species, suggesting that cultivation with mycorrhizal fungi improved the content of other elements irregularly. According to the THQ, the safety risk of stems of D. officinale cultivated with either conventional method or mycorrhizal fungi was low, particularly the D. officinale cultivated mycorrhizal fungi. The results indicated that cultivation with mycorrhizal fungi influenced the element content in stems and leaves of D. officinale. It is necessary to study the culture substrate, processing technology, and the mechanism of the increase or decrease in mineral elements of D. officinale in the future.
Dendrobium/chemistry*
;
Mycorrhizae
;
China
;
Plant Leaves/chemistry*
;
Minerals/analysis*
;
Risk Assessment
5.Diversity of arbuscular mycorrhizal fungi of Panax quinquefolius cultivated in Shandong province.
Zhi-Fang RAN ; Xiao-Tong YANG ; Rui LI ; Jie ZHOU ; Yong-Qing ZHANG ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(16):4103-4110
In this study, the colonization, diversity and relative abundance of arbuscular mycorrhizal fungi(AMF) in the roots of Panax quinquefolius in different habitats of Shandong province were analyzed by staining-microscopy and high-throughput sequencing. The data were analyzed by bioinformatics tools and statistical software. The results showed that the roots of P. quinquefolius in different habitats were colonized by AMF with different rates and intensities. The AMF in roots of P. quinquefolius belong to three genera, three families, three orders, one class and one phylum. At the level of order, the AMF mainly included Paraglomerales(52.48%), Glomerales(25.60%) and Archaeosporales(3.08%). At the level of family, the AMF were dominated by Paraglomeraceae(52.48%), Glomeraceae(18.94%) and Claroideoglomeraceae(3.05%). At the level of genus, Paraglomus(51.46%), Glomus(20.01%) and Claroideoglomus(3.52%) accounted for a large proportion, of which Paraglomus and Glomus were dominant. Cluster analysis showed that the AMF in roots of P. quinquefolius with close geographical locations could be clustered together. In this study, the diversity and dominant germplasm resources of AMF in roots of P. quinquefolius cultivated in the main producing areas were identified, which provi-ded basic data for revealing the quality formation mechanism of P. quinquefolius medicinal materials from the perspective of environment.
Fungi
;
Glomeromycota
;
Humans
;
Mycorrhizae/genetics*
;
Panax
;
Plant Roots
;
Soil Microbiology
6.Effect of different fungicides on efficiency of mycorrhizal symbiosis on Salvia miltiorrhiza.
Chun-Juan PU ; Peng-Ying LI ; Yu-Zhi LUO ; Xiu-Teng ZHOU ; Ai-Juan SHAO ; Mei-Lan CHEN
China Journal of Chinese Materia Medica 2021;46(6):1368-1373
Arbuscular mycorrhizal fungi provided is beneficial to Salvia miltiorrhiza for increasing yield, promoting the accumulation of active ingredients, and alleviating S. miltiorrhiza disease etc. However, the application of fungicides will affect the benefit of arbuscular mycorrhizal fungi and there is little research about it. This article study the effect of four different fungicides: carbendazim, polyoxin, methyl mopazine, and mancozeb on mycorrhiza benefit to S. miltiorrhiza by the infection intensity of arbuscular mycorrhizal fungi, the growth of S. miltiorrhiza, and the content of active ingredients. RESULTS:: showed that different fungicides had different effects. The application of mancozeb had the strongest inhibitory effect on the mycorrhizal benefit to S. miltiorrhiza. Mancozeb significantly reduced the mycorrhizal colonization and the beneficial effect of arbuscular mycorrhizal fungi on the growth and the accumulation of active components of S. miltiorrhiza. The application of polyoxin had no significant effect on mycorrhizal colonization. Instead, it had a synergistic effect with the mycorrhizal benefit to promoting the growth and accumulation of rosmarinic acid of S. miltiorrhiza. The inhibitory strengths of four fungicides are: mancozeb>thiophanate methyl, carbendazim>polyoxin. Therefore, we recommend applying biological fungicides polyoxin and avoid applying chemical fungicides mancozeb for disease control during mycorrhizal cultivation of S. miltiorrhiza.
Fungicides, Industrial/pharmacology*
;
Mycorrhizae
;
Plant Roots
;
Salvia miltiorrhiza
;
Symbiosis
7.Symbiosis between hyperaccumulators and arbuscular mycorrhizal fungi and their synergistic effect on the absorption and accumulation of heavy metals: a review.
Li WANG ; Gen WANG ; Fang MA ; Yongqiang YOU
Chinese Journal of Biotechnology 2021;37(10):3604-3621
The remediation of heavy-metal (HM) contaminated soil using hyperaccumulators is one of the important solutions to address the inorganic contamination widely occurred worldwide. Hyperaccumulators are able to hyperaccumulate HMs, but their planting, growth, and extraction capacities are greatly affected by HM stress. The application of arbuscular mycorrhizal fungi (AMF) enhances the function of hyperaccumulators by combining the functional advantages of both, improving the efficiency of remediation, shortening the remediation cycle, and maintaining the stability and persistence of the remediation. Thus, the combined use of AMF with hyperaccumulators has broad prospects for application in the management of increasingly complex and severe HM pollution. This review starts by defining the concept of hyperaccumulators, followed by describing the typical hyperaccumulators that were firstly reported in China as well as those known to form symbioses with AMF. This review provides a systematic and in-depth discussion of the effects of AMF on the growth of hyperaccumulators, as well as the absorption and accumulation of HMs, the effects and mechanism on the hyperaccumulator plus AMF symbiosis to absorb and accumulate HMs. AMF enhances the function of hyperaccumulators on the absorption and accumulation of HMs by regulating the physicochemical and biological conditions in the plant rhizosphere, the situation of elements homeostasis, the physiological metabolism and gene expression. Moreover, the symbiotic systems established by hyperaccumulators plus AMF have the potential to combine their abilities to remediate HMs-contaminated habitat. Finally, challenges for the combined use of remediation technologies for hyperaccumulator plus AMF symbiosis and future directions were prospected.
Biodegradation, Environmental
;
Metals, Heavy
;
Mycorrhizae/chemistry*
;
Plant Roots/chemistry*
;
Soil Pollutants
;
Symbiosis
8.Preliminary investigation on arbuscular mycorrhiza fungi of cultivated Panax quinquefolium roots.
Zhi-Fang RAN ; Xiao-Tong YANG ; Wei-Na DING ; Jie ZHOU ; Lan-Ping GUO ; Yong-Qing ZHANG
China Journal of Chinese Materia Medica 2020;45(9):2050-2056
In this study, the infection of root arbuscular mycorrhizal fungi(arbuscular mycorrhizal fungi, AMF of Panax quinquefolium in Shandong province was investigated, and the distribution characteristics and infection regularity of AMF were found out. The AMF of P. quinquefolium roots in different habitats was examined by alkali dissociation-trypickin blue staining method to study the infection rate and infection intensity. The contents of ginsenoside(Rb_1, Re, Rg_1, Rb_2, Rd and Rh_1) in the roots of P. quinquefolium was determined by HPLC. The experimental data were SPSS 17.0 statistical software for One-way analysis of variance, cluster analysis and correlation analysis. The results showed that the AMF infection in roots of P. quinquefolium, and there were obvious structures such as hyphae, arbuscular branches and vesicles, and the AMF infection rate and infection intensity showed obvious spatial and temporal heterogeneity with the growth age and origin of P. quinquefolium. The infection rate of AMF in roots of P. quinquefolium from 1 to 3 years increased significantly with the increase of growth years(P<0.05). The infection intensity and infection rate of P. quinquefolium showed a similar change trend, the AMF infection rate and infection intensity reached the highest level in the third year. Cluster analysis showed that the infection rates of roots of P. quinquefolium in similar geographical locations could be clustered together. Correlation analysis showed that the AMF infection rate of P. quinquefolium root was significantly positively correlated with the infection intensity, and the AMF infection rate and infection intensity were significantly positively correlated with the contents of ginsenoside Rg_1, Re and Rb_1. This study explored the distribution characteristics and regularity of AMF in roots of P. quinquefolium under the protected cultivation conditions, and provided basic data for ecological cultivation of P. quinquefolium and research and development of biological bacterial fertilizer.
Fertilizers
;
Fungi
;
Ginsenosides
;
Mycorrhizae
;
Panax
;
Plant Roots
9.Technical evaluation and principle analysis of simulative habitat cultivation of Dendrobium nobile.
Jin-Qiang ZHANG ; Tao ZHOU ; Cheng-Hong XIAO ; Wei-Ke JIANG ; Lan-Ping GUO ; Chuan-Zhi KANG ; Xiao-Kang LIAO ; Yuan-Ping HUANG ; Xiao WANG ; Heng LU
China Journal of Chinese Materia Medica 2020;45(9):2042-2045
The technique of "simulative habitat cultivation" is to preserve the quality of traditional Chinese medicine by simulating the original habitat and site environment of wild Chinese medicine resources. Dendrobium nobile is the most representative variety of traditional Chinese medicine which reflects the coordinated development of medicinal material production and ecological environment. In this paper, the main technical points of the simulated cultivation model of D. nobile were summarized as follows: rapid propagation of seedling tissue technology to ensure the genetic stability of provenance; line card+fermented cow manure+live moss method to improve the survival rate; epiphytic stone cultivation to improve the quality of medicinal materials; and the integration of mycorrhizal fungi to improve the quality stability of medicinal materials. On the basis of summarizing the ecological benefits, economical and social benefits generated by the application of the technology, the paper systematically analyzes the principle of the technology for the cultivation of D. nobile to promote the excellent quality, the light, gas, heat and fertilizer resources of the undergrowth niche are in line with the wild site environment of D. nobile. The rich and complex soil microbial community in the forest laid the foundation for the species diversity needed for the growth of D. nobile.The stress effect on the growth of D. nobile resulted in the accumulation of secondary metabolites. The symbiotic relationship between the symbiotic fungi such as bryophytes and D. nobile promotes the synthesis of plant secondary metabolites. The high quality D. nobile was produced efficiently by improving and optimizing the cultivation techniques.
Animals
;
Cattle
;
Dendrobium
;
Ecosystem
;
Female
;
Medicine, Chinese Traditional
;
Mycorrhizae
;
Symbiosis
10.Correlation between rhizospheric microorganisms distribution and alkaloid content of Fritillaria taipaiensis.
Mao-Jun MU ; Di-Gui ZHANG ; Hua ZHANG ; Min YANG ; Dong-Qin GUO ; Nong ZHOU
China Journal of Chinese Materia Medica 2019;44(11):2231-2235
In order to reveal the relationship between the amount of soil microorganisms and the quality of Fritillaria taipaiensis, both cultivated and wild F. taipaiensis were collected from Chongqing, Wuxi at different stages of their growth as objects of the research. The mycorrhizal infection rate and colonization intensity, peimisine and total alkaloid content in bulbs, the amount of microorganisms and biomass carbon content in rhizospheric soil were all determined using common methods. The results showed that the typical arbuscular-vesicle roots were formed after the AM fungi infected the F. taipaiensis roots which were collected from different origins. The mycorrhizal infection rates were ranged from 78.74% to 98.68% and the colonization intensities were ranged from 13.29% to 37.06%. The rhizospheric microorganisms of F. taipaiensis showed abundant resources. The distribution rule of them in the rhizospheric soil was as follows: the amount of bacteria>the amount of actinomycetes>the amount of fungi. The rhizospheric bacteria, decomposition inorganic phosphorus bacteria, decomposition organic phosphorus bacteria, actinomycetes amount and the total number of microbes increased first and then decreased with the increase of years, while decomposition potassium bacteria showed decreasing trend and fungi showed gradual increasing trend. The soil microbial flora content in the soil changed from "bacterial type" with a high fertility to "fungal type" with a low fertility. The mass fraction of peimisine and total alkaloid content increased first and then decreased with the increase of over the years, the same trend of culturable rhizosphere soil bacteria and actinomycetes indicated that the growth years affected the quality of soil and medicinal materials on different levels. Therefore, the diversity of microbial communities in rhizosphere soil reduced with the increase of years leading to the continuous cropping obstacles and the destruction of medicinal quality of F. taipaiensis.
Alkaloids
;
analysis
;
Fritillaria
;
chemistry
;
microbiology
;
Mycorrhizae
;
Plant Roots
;
Rhizosphere
;
Soil Microbiology

Result Analysis
Print
Save
E-mail