1.Research progress on the mechanism of phenotypic transformation of pulmonary artery smooth muscle cells induced by hypoxia.
Journal of Zhejiang University. Medical sciences 2023;51(6):750-757
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) is a key factor in pulmonary vascular remodeling. Inhibiting or reversing phenotypic transformation can inhibit pulmonary vascular remodeling and control the progression of hypoxic pulmonary hypertension. Recent studies have shown that hypoxia causes intracellular peroxide metabolism to induce oxidative stress, induces multi-pathway signal transduction, including those related to autophagy, endoplasmic reticulum stress and mitochondrial dysfunction, and also induces non-coding RNA regulation of cell marker protein expression, resulting in PASMCs phenotypic transformation. This article reviews recent research progress on mechanisms of hypoxia-induced phenotypic transformation of PASMCs, which may be helpful for finding targets to inhibit phenotypic transformation and to improve pulmonary vascular remodeling diseases such as hypoxia-induced pulmonary hypertension.
Humans
;
Pulmonary Artery
;
Hypertension, Pulmonary
;
Vascular Remodeling/genetics*
;
Hypoxia/genetics*
;
Myocytes, Smooth Muscle
;
Cell Proliferation/physiology*
;
Cells, Cultured
;
Cell Hypoxia/genetics*
2.Effects of L-Arginine and α
Hong ZHANG ; Zheng Hong ZHANG ; Chen Shan ZHANG ; Zheng Chao WANG
Acta Academiae Medicinae Sinicae 2020;42(6):815-819
Kidney is one of the important organs of the body.With both excretory and endocrine functions,it plays a vital role in regulating the normal physiological state.As a precursor of the nitric oxide(NO)synthesis
Animals
;
Arginine/physiology*
;
Kidney/physiology*
;
Muscle, Smooth, Vascular
;
Nitric Oxide/physiology*
;
Rats
;
Receptors, Adrenergic, alpha-1/physiology*
;
Renal Insufficiency/physiopathology*
;
Signal Transduction
;
Vasoconstriction
3.The expression and meaning of Hippo signaling pathway in carotid artery ligation induced arterial remodeling model of rats.
Ning ZHU ; Hao CHEN ; Xu Yong ZHAO ; Fan Hao YE ; Yi WANG
Chinese Journal of Applied Physiology 2019;35(1):23-27
OBJECTIVE:
To establish an arterial remodeling model of rats and to investigate the expression and role of Hippo signaling pathway in this model.
METHODS:
In the model group (n=40), the left common carotid artery was removed through the median incision of the neck. The 6-0 non-absorbable line was used to ligate the carotid artery near the proximal end as far as possible, completely blocking the blood flow. The common carotid artery of rats in control group (n=20) was not ligated using the operative line. After 14 days, the animals were sacrificed and the common carotid arteries were separated through the original surgical pathway and the arteries from the ligature to the distal end were collected. Arterial morphology and fibrosis were observed by HE and MASSON staining. Immunohistochemical staining was used to detect the expressions of anti-α smooth muscle actin (α-MSA) and proliferating cell nuclear antigen (PCNA) in the carotid artery. Western blot was used to detect the expressions of yes associated protein (YAP), transcriptional coactivator with PDZ-binding motif (TAZ), TEAD1, Bcl-2-like protein 4 (Bax), and B-cell lymphoma-2 (Bcl-2).
RESULTS:
Compared with the control group, the HE staining showed that the vascular remodeling was obvious, the ratio of the neointima/middle membrane was increased significantly, and the MASSON staining indicated that the fibrosis was significantly increased in model group. The immunohistochemical staining suggested that the expressions of α-SMA and PCNA were increased significantly; Western blot suggested that the expressions of YAP, TAZ, TEAD1, and Bcl-2 were increased in carotid artery of the model group. While the expression of Bax and the ratio of Bax/Bcl-2 were decreased.
CONCLUSION
A rat model of arterial remodeling mediated by carotid artery ligation was established successfully in this study. Hippo signaling pathway was proved to be activated in the arterial remodeling model induced by carotid artery ligation in rats, and might regulate the change of Bax/Bcl-2 ratio related to proliferation and apoptosis, and subsequently involved in the proliferation of smooth muscle cells to promote vascular remodeling.
Animals
;
Carotid Arteries
;
metabolism
;
Carotid Artery, Common
;
Cell Proliferation
;
Myocytes, Smooth Muscle
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Rats
;
Signal Transduction
;
Vascular Remodeling
;
physiology
4.Multiple regulatory effects of angiotensin II on the large-conductance Ca- and voltage-activated potassium channel in vascular smooth muscle cells.
Xiao-Chen YIN ; Su-Li ZHANG ; Hui-Rong LIU
Acta Physiologica Sinica 2019;71(2):187-195
Renin-angiotensin system (RAS) is involved in the regulation of vascular smooth muscle cell (VSMC) tension. Angiotensin II (Ang II) as the main effector molecule of RAS can increase the intracellular Ca concentration and cause VSMCs contraction by activating angiotensin II type 1 receptor (AT1R). The large-conductance Ca- and voltage-activated potassium (BK) channel is an essential potassium channel in VSMCs, playing an important role in maintaining membrane potential and intracellular potassium-calcium balance. The BK channel in VSMCs mainly consists of α and β1 subunits. Functional BKα subunits contain voltage-sensors and Ca binding sites. Hence, increase in the membrane potential or intracellular Ca concentration can trigger the opening of the BK channel by mediating transient K outward current in a negative regulatory manner. However, increasing evidence has shown that although Ang II can raise the intracellular Ca concentration, it also inhibits the expression and function of the BK channel by activating the PKC pathway, internalizing AT1R-BKα heterodimer, or dissociating α and β1 subunits. Under some specific conditions, Ang II can also activate the BK channel, but the underlying mechanism remains unknown. In this review, we summarize the potential mechanisms underlying the inhibitory or activating effect of Ang II on the BK channel, hoping that it could provide a theoretical basis for improving intracellular ion imbalance.
Angiotensin II
;
physiology
;
Calcium
;
physiology
;
Humans
;
Large-Conductance Calcium-Activated Potassium Channels
;
physiology
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
physiology
;
Renin-Angiotensin System
5.Recent progress in smooth muscle autophagy of vascular diseases.
Shi TAI ; Qin ZHOU ; Yanan GUO ; Shenghua ZHOU
Journal of Central South University(Medical Sciences) 2018;43(8):920-928
Autophagy plays a crucial role in maintaining normal structure and vascular function in vivo. When stress-relevant stimuli are involved, the increases of autophagy can protect vascular smooth muscle cells, promote cell survival, and phenotype transformation, as well as reduce calcification. On the contrary, the decrease of autophagy can accelerate cell senescence, resulting in structural changes and dysfunction of vasomotor and vasodilation. However, excessive activation of autophagy can induce the damage of the healthy protein and essential organelles, and even lead to autophagic cell death, accelerating the progression of vascular disease. Thus, the precise targeting of autophagy opens a novel way for treatment of vascular diseases.
Autophagy
;
physiology
;
Cell Survival
;
Cellular Senescence
;
Disease Progression
;
Humans
;
Muscle, Smooth, Vascular
;
cytology
;
Myocytes, Smooth Muscle
;
physiology
;
Vascular Diseases
;
pathology
;
therapy
6.Pancreatic kininogenase improves erectile function in streptozotocin-induced type 2 diabetic rats with erectile dysfunction.
Guo-Tao CHEN ; Bai-Bing YANG ; Jian-Huai CHEN ; Zheng ZHANG ; Lei-Lei ZHU ; He-Song JIANG ; Wen YU ; Yun CHEN ; Yu-Tian DAI
Asian Journal of Andrology 2018;20(5):448-453
Erectile dysfunction (ED) associated with type 2 diabetes is a severe problem that requires effective treatment. Pancreatic kininogenase (PK) has the potential to improve the erectile function of ED patients. This study aims to investigate the effect of PK on erectile function in streptozotocin-induced type 2 diabetic ED rats. To achieve this goal, we divided male Sprague-Dawley rats into five groups. One group was not treated, and the other four groups were treated with saline, sildenafil, PK or sildenafil, and PK, respectively, for 4 weeks after the induction of type 2 diabetic ED. Then, intracavernous pressure under cavernous nerve stimulation was measured, and penile tissue was collected for further study. Endothelial nitric oxide synthase levels, smooth muscle content, endothelium content, cyclic guanosine monophosphate (cGMP) levels in the corpus cavernosum, and neuronal nitric oxide synthase levels in the dorsal penile nerve were measured. Improved erectile function and endothelium and smooth muscle content in the corpus cavernosum were observed in diabetic ED rats. When treating diabetic ED rats with PK and sildenafil at the same time, a better therapeutic effect was achieved. These data demonstrate that intraperitoneal injection of PK can improve erectile function in a rat model of type 2 diabetic ED. With further research on specific mechanisms of erectile function improvement, PK may become a novel treatment for diabetic ED.
Animals
;
Cyclic GMP/metabolism*
;
Diabetes Mellitus, Experimental/physiopathology*
;
Erectile Dysfunction/physiopathology*
;
Kallikreins/therapeutic use*
;
Male
;
Muscle, Smooth, Vascular/physiopathology*
;
Nitric Oxide Synthase Type I/metabolism*
;
Nitric Oxide Synthase Type III/metabolism*
;
Penile Erection/physiology*
;
Penis/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Sildenafil Citrate/therapeutic use*
;
Treatment Outcome
;
Urological Agents/therapeutic use*
7.miR-379 Inhibits Cell Proliferation, Invasion, and Migration of Vascular Smooth Muscle Cells by Targeting Insulin-Like Factor-1.
Kai LI ; Yong WANG ; Anji ZHANG ; Baixue LIU ; Li JIA
Yonsei Medical Journal 2017;58(1):234-240
PURPOSE: MicroRNAs are small non-coding RNAs that play important roles in vascular smooth muscle cell (VSMC) function. This study investigated the role of miR-379 on proliferation, invasion, and migration of VSMCs and explored underlying mechanisms thereof. MATERIALS AND METHODS: MicroRNA, mRNA, and protein levels were determined by quantitative real-time PCR and western blot. The proliferative, invasive, and migratory abilities of VSMCs were measured by CCK-8, invasion, and wound healing assay, respectively. Luciferase reporter assay was used to confirm the target of miR-379. RESULTS: Platelet-derived growth factor-bb was found to promote cell proliferation and suppress miR-379 expression in VSMCs. Functional assays demonstrated that miR-379 inhibited cell proliferation, cell invasion, and migration. Flow cytometry results further showed that miR-379 induced apoptosis in VSMCs. TargetScan analysis and luciferase report assay confirmed that insulin-like growth factor-1 (IGF-1) 3'UTR is a direct target of miR-379, and mRNA and protein levels of miR-379 and IGF-1 were inversely correlated. Rescue experiments showed that enforced expression of IGF-1 sufficiently overcomes the inhibitory effect of miR-379 on cell proliferation, invasion, and migration in VSMCs. CONCLUSION: Our results suggest that miR-379 plays an important role in regulating VSMCs proliferation, invasion, and migration by targeting IGF-1.
Apoptosis
;
Cell Movement/*physiology
;
Cell Proliferation/*physiology
;
Humans
;
Insulin
;
Insulin-Like Growth Factor I/*physiology
;
MicroRNAs/*physiology
;
Muscle, Smooth, Vascular/*cytology
;
Proto-Oncogene Proteins c-sis/*physiology
;
RNA, Messenger/metabolism
;
Real-Time Polymerase Chain Reaction
;
Sincalide/physiology
;
Wound Healing/physiology
8.Lobaric Acid Inhibits VCAM-1 Expression in TNF-alpha-Stimulated Vascular Smooth Muscle Cells via Modulation of NF-kappaB and MAPK Signaling Pathways.
Ii Seul KWON ; Joung Han YIM ; Hong Kum LEE ; Suhkneung PYO
Biomolecules & Therapeutics 2016;24(1):25-32
Lichens have been known to possess multiple biological activities, including anti-proliferative and anti-inflammatory activities. Vascular cell adhesion molecule-1 (VCAM-1) may play a role in the development of atherosclerosis. Hence, VCAM-1 is a possible therapeutic target in the treatment of the inflammatory disease. However, the effect of lobaric acid on VCAM-1 has not yet been investigated and characterized. For this study, we examined the effect of lobaric acid on the inhibition of VCAM-1 in tumor necrosis factor-alpha (TNF-alpha)-stimulated mouse vascular smooth muscle cells. Western blot and ELISA showed that the increased expression of VCAM-1 by TNF-alpha was significantly suppressed by the pre-treatment of lobaric acid (0.1-10 mug/ml) for 2 h. Lobaric acid abrogated TNF-alpha-induced NF-kappaB activity through preventing the degradation of IkappaB and phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen activated protein (MAP) kinase. Lobaric acid also inhibited the expression of TNF-alpha receptor 1 (TNF-R1). Overall, our results suggest that lobaric acid inhibited VCAM-1 expression through the inhibition of p38, ERK, JNK and NF-kappaB signaling pathways, and downregulation of TNF-R1 expression. Therefore, it is implicated that lobaric acid may suppress inflammation by altering the physiology of the atherosclerotic lesion.
Animals
;
Atherosclerosis
;
Blotting, Western
;
Down-Regulation
;
Enzyme-Linked Immunosorbent Assay
;
Extracellular Signal-Regulated MAP Kinases
;
Inflammation
;
Lichens
;
Mice
;
Muscle, Smooth, Vascular*
;
NF-kappa B*
;
Phosphorylation
;
Phosphotransferases
;
Physiology
;
Tumor Necrosis Factor-alpha
;
Vascular Cell Adhesion Molecule-1*
9.Tacrolimus inhibits vasoconstriction by increasing Ca(2+) sparks in rat aorta.
Yu-fang CHEN ; Chen WANG ; Rui ZHANG ; Huan WANG ; Rong MA ; Si JIN ; Ji-zhou XIANG ; Qiang TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):8-13
The present study attempted to test a novel hypothesis that Ca(2+) sparks play an important role in arterial relaxation induced by tacrolimus. Recorded with confocal laser scanning microscopy, tacrolimus (10 µmol/L) increased the frequency of Ca(2+) sparks, which could be reversed by ryanodine (10 µmol/L). Electrophysiological experiments revealed that tacrolimus (10 µmol/L) increased the large-conductance Ca(2+)-activated K(+) currents (BKCa) in rat aortic vascular smooth muscle cells (AVSMCs), which could be blocked by ryanodine (10 µmol/L). Furthermore, tacrolimus (10 and 50 µmol/L) reduced the contractile force induced by norepinephrine (NE) or KCl in aortic vascular smooth muscle in a concentration-dependent manner, which could be also significantly attenuated by iberiotoxin (100 nmol/L) and ryanodine (10 µmol/L) respectively. In conclusion, tacrolimus could indirectly activate BKCa currents by increasing Ca(2+) sparks released from ryanodine receptors, which inhibited the NE- or KCl-induced contraction in rat aorta.
Animals
;
Aorta
;
cytology
;
metabolism
;
physiology
;
Calcium Signaling
;
Cells, Cultured
;
Large-Conductance Calcium-Activated Potassium Channels
;
metabolism
;
Male
;
Muscle, Smooth, Vascular
;
drug effects
;
metabolism
;
physiology
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
Norepinephrine
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Ryanodine
;
pharmacology
;
Tacrolimus
;
pharmacology
;
Vasoconstriction
10.Effects 'of β3 adrenoceptors on the contractility of rat thoracic aorta smooth muscle and the mechanism.
Xiao-peng LI ; Qian-qian ZHAO ; Lan YANG ; Hai-qing LI ; Xiang-li CUI
Chinese Journal of Applied Physiology 2016;32(1):69-73
OBJECTIVETo observe the effect of β₃adrenoceptors (β₃-AR) activation on rat thoracic aorta smooth muscle contractility and the possible related mechanism.
METHODSThe endothelium removed thoracic aorta was pre-contracted with 30 mmol/L KCl physiological saline solution (PSS). Then the tension of the thoracic aorta was recorded in presence of BRL37344 (BRL) to determine the action of β₃-AR. The tension of the thoracic aorta was also recorded in the presence of Propranolol (PRA), SR59230A (SR), L-NNA, H-89 and Iberiotoxin (IBTX) respectively to reveal the underling mechanism of β₃-AR activation on rat vascular smooth muscle. Immunohistochemistry was adopted to confirm the existence and the distribution of β₃-AR in rat thoracic aorta.
RESULTSThe results showed that: (1) The thoracic aorta was relaxed by β₃-AR activation, with a relaxation percentage of (10.59 ± 0.79). (2) β₃-AR was expressed in both endothelial and smooth muscle layer in thoracic aorta sections of rats. (3) PRA did not block the effect of BRL on the thoracic aorta. The relaxation actions of BRL could be antagonized by pre-incubating the thoracic aorta with SR. (4) L-NNA (a NOS inhibitor) and H-89 (a PKA inhibitor) reversed the relaxation effect of BRL on vascular smooth muscle. (5) The effect of BRL was decreased after application of Ibriotoxin (IBTX), a large conductance calcium dependent potassium channel blocker.
CONCLUSIONThe results confirmed that activation of β₃-AR led to relaxation of thoracic aorta smooth muscle. The relaxation action of β₃-AR on smooth muscle of rat thoracic aorta was related to activation of NOS and PKA signaling pathway. Large conductance Ca²⁺-K⁺ channels were involved in the relaxation action of β₃-AR activation on rat thoracic aorta smooth muscle.
Animals ; Aorta, Thoracic ; physiology ; In Vitro Techniques ; Isoquinolines ; Large-Conductance Calcium-Activated Potassium Channels ; physiology ; Muscle Contraction ; Muscle Relaxation ; Muscle, Smooth, Vascular ; physiology ; Nitroarginine ; Peptides ; Propanolamines ; Propranolol ; Rats ; Receptors, Adrenergic, beta-3 ; physiology ; Signal Transduction ; Sulfonamides

Result Analysis
Print
Save
E-mail