1.Study on after-effect of electroacupuncture with different time intervals on corticospinal excitability in primary motor cortex.
Meng-Meng XIE ; Zi-Zhen CHEN ; Wei-Li CHENG ; Jian-Peng HUANG ; Neng-Gui XU ; Jian-Hua LIU
Chinese Acupuncture & Moxibustion 2023;43(11):1239-1245
OBJECTIVES:
To compare the effects of electroacupuncture (EA) with different time intervals on corticospinal excitability of the primary motor cortex (M1) and the upper limb motor function in healthy subjects and observe the after-effect rule of acupuncture.
METHODS:
Self-comparison before and after intervention design was adopted. Fifteen healthy subjects were included and all of them received three stages of trial observation, namely EA0 group (received one session of EA), EA6h group (received two sessions of EA within 1 day, with an interval of 6 h) and EA48h group (received two sessions of EA within 3 days, with an interval of 48 h). The washout period among stages was 1 week. In each group, the needles were inserted perpendicularly at Hegu (LI 4) on the left side, 23 mm in depth and at a non-acupoint, 0.5 cm nearby to the left side of Hegu (LI 4), separately. Han's acupoint nerve stimulator (HANS-200A) was attached to these two needles, with continuous wave and the frequency of 2 Hz. The stimulation intensity was exerted higher than the exercise threshold (local muscle twitching was visible, and pain was tolerable by healthy subjects, 1-2 mA ). The needles were retained for 30 min. Using the single pulse mode of transcranial magnetic stimulation (TMS) technique, before the first session of EA (T0) and at the moment (T1), in 2 h (T2) and 24 h (T3) after the end of the last session of EA, on the left first dorsal interosseous muscle, the amplitude, latency (LAT), resting motor threshold (rMT) of motor evoked potentials (MEPs) and the completion time of grooved pegboard test (GPT) were detected. Besides, in the EA6h group, TMS was adopted to detect the excitability of M1 (amplitude, LAT and rMT of MEPs) before the last session of EA (T0*).
RESULTS:
The amplitude of MEPs at T1 and T2 in the EA0 group, at T0* in the EA6h group and at T1, T2 and T3 in the EA48h group was higher when compared with the value at T0 in each group separately (P<0.001). At T1, the amplitude of MEPs in the EA0 group and the EA48h group was higher than that in the EA6h group (P<0.001, P<0.01); at T2, it was higher in the EA0 group when compared with that in the EA6h group (P<0.01); at T3, the amplitude in the EA0 group and the EA6h group was lower than that of the EA48h group (P<0.001). The LAT at T1 was shorter than that at T0 in the three groups (P<0.05), and the changes were not obvious at the rest time points compared with that at T0 (P > 0.05). The GPT completion time of healthy subjects in the EA0 group and the EA48h group at T1, T2 and T3 was reduced in comparison with that at T0 (P<0.001). The completion time at T3 was shorter than that at T0 in the EA6h group (P<0.05); at T2, it was reduced in the EA48h group when compared with that of the EA6h group (P<0.05). There were no significant differences in rMT among the three groups and within each group (P>0.05).
CONCLUSIONS
Under physiological conditions, EA has obvious after-effect on corticospinal excitability and upper limb motor function. The short-term interval protocol (6 h) blocks the after-effect of EA to a certain extent, while the long-term interval protocol (48 h) prolongs the after-effect of EA.
Humans
;
Electroacupuncture
;
Motor Cortex/physiology*
;
Transcranial Magnetic Stimulation/methods*
;
Upper Extremity
;
Exercise
;
Muscle, Skeletal/physiology*
2.Analysis of muscle synergy and muscle functional network at different walking speeds based on surface electromyographic signal.
Caihong CUI ; Huacong MIAO ; Tie LIANG ; Xiuling LIU ; Xiaoguang LIU
Journal of Biomedical Engineering 2023;40(5):938-944
An in-depth understanding of the mechanism of lower extremity muscle coordination during walking is the key to improving the efficacy of gait rehabilitation in patients with neuromuscular dysfunction. This paper investigates the effect of changes in walking speed on lower extremity muscle synergy patterns and muscle functional networks. Eight healthy subjects were recruited to perform walking tasks on a treadmill at three different speeds, and the surface electromyographic signals (sEMG) of eight muscles of the right lower limb were collected synchronously. The non-negative matrix factorization (NNMF) method was used to extract muscle synergy patterns, the mutual information (MI) method was used to construct the alpha frequency band (8-13 Hz), beta frequency band (14-30 Hz) and gamma frequency band (31-60 Hz) muscle functional network, and complex network analysis methods were introduced to quantify the differences between different networks. Muscle synergy analysis extracted 5 muscle synergy patterns, and changes in walking speed did not change the number of muscle synergy, but resulted in changes in muscle weights. Muscle network analysis found that at the same speed, high-frequency bands have lower global efficiency and clustering coefficients. As walking speed increased, the strength of connections between local muscles also increased. The results show that there are different muscle synergy patterns and muscle function networks in different walking speeds. This study provides a new perspective for exploring the mechanism of muscle coordination at different walking speeds, and is expected to provide theoretical support for the evaluation of gait function in patients with neuromuscular dysfunction.
Humans
;
Walking Speed
;
Muscle, Skeletal/physiology*
;
Electromyography
;
Gait/physiology*
;
Walking/physiology*
3.Evaluation of Muscle Fatigue in Spinal Surgery Instruments Based on sEMG-JASA.
Yuxiao HOU ; Ningbo MAO ; Gengyu CAO ; Li WANG ; Yu ZHANG ; Yu ZHAO
Chinese Journal of Medical Instrumentation 2023;47(3):252-257
Based on the joint analysis of EMG spectrum and amplitude method (JASA), a study on muscle fatigue assessment of spinal surgical instruments based on surface EMG signals was carried out, and a comparative evaluation of the operating comfort before and after the optimization of spinal surgical instruments was completed. A total of 17 subjects were recruited to collect the surface EMG signals of their brachioradialis and biceps. Five surgical instruments before and after optimization were selected for data comparison, and the operating fatigue time proportion of each group of instruments under the same task was calculated based on the RMS and MF eigenvalues. The results showed that when completing the same operation task, the operation fatigue time of the surgical instruments before optimization was significantly higher than that after optimization (P<0.05); there was no significant difference in the fatigue status of brachioradialis and biceps when operating the same instrument (P>0.05). These results provide objective data and reference for the ergonomic design of surgical instruments and fatigue damage protection.
Humans
;
Muscle Fatigue/physiology*
;
Muscle, Skeletal
;
Electromyography
;
Ergonomics
4.Is the myonuclear domain ceiling hypothesis dead?
Ferdos AMAN ; Eman EL KHATIB ; Alanood ALNEAIMI ; Ahmed MOHAMED ; Alya Sultan ALMULLA ; Amna ZAIDAN ; Jana ALSHAFEI ; Omar HABBAL ; Salma ELDESOUKI ; Rizwan QAISAR
Singapore medical journal 2023;64(7):415-422
Muscle fibres are multinuclear cells, and the cytoplasmic territory where a single myonucleus controls transcriptional activity is called the myonuclear domain (MND). MND size shows flexibility during muscle hypertrophy. The MND ceiling hypothesis states that hypertrophy results in the expansion of MND size to an upper limit or MND ceiling, beyond which additional myonuclei via activation of satellite cells are required to support further growth. However, the debate about the MND ceiling hypothesis is far from settled, and various studies show conflicting results about the existence or otherwise of MND ceiling in hypertrophy. The aim of this review is to summarise the literature about the MND ceiling in various settings of hypertrophy and discuss the possible factors contributing to a discrepancy in the literature. We conclude by describing the physiological and clinical significance of the MND ceiling limit in the muscle adaptation process in various physiological and pathological conditions.
Humans
;
Muscle Fibers, Skeletal/physiology*
;
Hypertrophy/pathology*
;
Muscle, Skeletal
5.Design and Experimental Research of Synchronous Acquisition System of EMG and Blood Oxygen Signal.
Mengjie ZANG ; Lidong XING ; Zhiyu QIAN ; Liuye YAO
Chinese Journal of Medical Instrumentation 2023;47(1):54-60
In this study, a surface electromyography (sEMG) and blood oxygen signal real-time monitoring system is designed to explore the changes of physiological signals during muscle fatigue, so as to detect muscle fatigue. The analysis method of sEMG and the principle of blood oxygen detection are respectively introduced, and the system scheme is expounded. The hardware part of the system takes STM32 as the core. Conditioning module composition; blood oxygen signal acquisition is based on near infrared spectroscopy (NIRS), specifically including light source, light source driving, photoelectric conversion, signal conditioning and other modules. The system software part is based on the real-time uC/OS-III software system. The characteristic parameters of sEMG were extracted by isometric contraction local muscle fatigue experiment; the relative changes of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) were calculated in the forearm blocking experiment, thereby verifying that the system collects two signals effectiveness.
Muscle, Skeletal
;
Oxygen
;
Electromyography
;
Muscle Fatigue/physiology*
;
Computers
6.Exosome-mediated regulatory mechanisms in skeletal muscle: a narrative review.
Zhaolu WANG ; Jinjin YANG ; Xiaohui SUN ; Xi SUN ; Gongshe YANG ; Xin'e SHI
Journal of Zhejiang University. Science. B 2023;24(1):1-14
Skeletal muscle plays a paramount role in physical activity, metabolism, and energy balance, while its homeostasis is being challenged by multiple unfavorable factors such as injury, aging, or obesity. Exosomes, a subset of extracellular vesicles, are now recognized as essential mediators of intercellular communication, holding great clinical potential in the treatment of skeletal muscle diseases. Herein, we outline the recent research progress in exosomal isolation, characterization, and mechanism of action, and emphatically discuss current advances in exosomes derived from multiple organs and tissues, and engineered exosomes regarding the regulation of physiological and pathological development of skeletal muscle. These remarkable advances expand our understanding of myogenesis and muscle diseases. Meanwhile, the engineered exosome, as an endogenous nanocarrier combined with advanced design methodologies of biomolecules, will help to open up innovative therapeutic perspectives for the treatment of muscle diseases.
Exosomes/physiology*
;
Muscle, Skeletal/metabolism*
;
Cell Communication
;
Homeostasis
7.Evaluation of ankle joint protection effect of parachute ankle brace on paratrooper landing.
Xin Yu HUANG ; Ying Jie YU ; Yi Jun WANG ; Tao LIU ; Jing Di CHEN ; Lei WU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(7):504-508
Objective: To study the protective effect of parachute ankle brace on ankle joint during simulated parachuting landing. Methods: In August 2021, 30 male paratroopers were selected as the test subjects by simple random sampling method. They jumped from the 1.5 m and 2.0 m height platforms respectively with and without parachute ankle brace, and landed on the sandy ground in a semi-squat parachute landing position. The experiment was divided into 1.5 m experimental group and control group and 2.0 m experimental group and control group. Angle sensor and surface electromyograph were used to measure and analyze the coronal tilt range of the ankle joint and the percentage of maximal voluntary contraction (MVE%) of the muscles around the ankle joint, respectively, to evaluate the protective effect of the parachute ankle brace. Results: At the same height, the tilt range of coronal plane of ankle in experimental group was significantly reduced compared with control group, and the difference was statistically significant (P<0.05). Under the same protection state, the tilt range of the coronal plane of the ankle in the 1.5 m group was significantly reduced compared with that in the 2.0 m group, and the difference was statistically significant (P<0.05). The coronal plane inclination range of the ankle in 2 m experimental group was significantly lower than that in 1.5 m control group, and the difference was statistically significant (P<0.05). Compared with 1.5 m control group, MVE% of right tibialis anterior muscle and bilateral lateral gastrocnemius decreased in 1.5 m experimental group, while MVE% of bilateral peroneus longus increased, with statistical significance (P<0.05). Compared with 2.0 m control group, the MVE% of bilateral tibialis anterior muscle and right lateral gastrocnemius decreased in 2.0 m experimental group, while the MVE% of bilateral peroneus longus increased, with statistical significance (P<0.05). The MVE% of bilateral tibialis anterior muscle, bilateral lateral gastrocnemius muscle and right peroneus longus muscle in 1.5 m experimental group decreased compared with 2.0 m experimental group, and the differences were statistically significant (P<0.05). Compared with 2.0 m control group, the MVE% of bilateral tibialis anterior muscle, right lateral gastrocnemius muscle and right peroneus longus muscle in 1.5 m control group decreased, and the differences were statistically significant (P<0.05) . Conclusion: Wearing parachute ankle brace can effectively limit the coronal plane inclination range of ankle joint, improve the stability of ankle joint and reduce the load on the muscles around ankle joint by landing. Reducing the height of the jumping platform can reduce the coronal plane incline range of the ankle and the muscle load around the ankle during landing.
Humans
;
Male
;
Ankle
;
Ankle Joint/physiology*
;
Lower Extremity/physiology*
;
Muscle, Skeletal/physiology*
;
Electromyography
8.Research progress of sarcopenic obesity and chronic liver disease.
Lan Yan TANG ; Li Zhi ZHOU ; Pan ZHANG
Chinese Journal of Hepatology 2023;31(4):445-448
Sarcopenia has attracted increasing attention with the study of nutrition in patients with liver disease. Sarcopenia is an independent risk factor for a poor prognosis of liver disease and is becoming increasingly common in patients with liver disease. Studies have shown that patients with liver disease and sarcopenic obesity have a worse prognosis than patients with liver disease and simple sarcopenia or obesity. In clinical practice, it is easy to recognize patients with malnutrition and decreased muscle mass, but we often ignore those patients with normal body weight or even obesity who will likewise experience muscle mass loss. Simply relying on the monitoring of body mass and body mass index to assess the nutritional and muscle status of patients with liver disease is not accurate. At present, our understanding of the relationship between chronic liver disease and sarcopenic obesity is still poorly understood. In this paper, the research progress on chronic liver disease, sarcopenia, and sarcopenic obesity in recent years is reviewed so as to provide a theoretical basis for improving the clinical prognosis of patients with liver disease.
Humans
;
Sarcopenia/complications*
;
Body Composition/physiology*
;
Obesity/complications*
;
Risk Factors
;
Liver Diseases/complications*
;
Muscle, Skeletal
9.Correlation between Elbow Flexor Muscle Strength and Needle Electromyography Parameters after Musculocutaneous Nerve Injury.
Dong GAO ; Pei-Pei ZHUO ; Dong TIAN ; Dan RAN ; Qing XIA ; Wen-Tao XIA
Journal of Forensic Medicine 2023;39(2):137-143
OBJECTIVES:
To explore the changes of elbow flexor muscle strength after musculocutaneous nerve injury and its correlation with needle electromyography (nEMG) parameters.
METHODS:
Thirty cases of elbow flexor weakness caused by unilateral brachial plexus injury (involving musculocutaneous nerve) were collected. The elbow flexor muscle strength was evaluated by manual muscle test (MMT) based on Lovett Scale. All subjects were divided into Group A (grade 1 and grade 2, 16 cases) and Group B (grade 3 and grade 4, 14 cases) according to their elbow flexor muscle strength of injured side. The biceps brachii of the injured side and the healthy side were examined by nEMG. The latency and amplitude of the compound muscle action potential (CMAP) were recorded. The type of recruitment response, the mean number of turns and the mean amplitude of recruitment potential were recorded when the subjects performed maximal voluntary contraction. The quantitative elbow flexor muscle strength was measured by portable microFET 2 Manual Muscle Tester. The percentage of residual elbow flexor muscle strength (the ratio of quantitative muscle strength of the injured side to the healthy side) was calculated. The differences of nEMG parameters, quantitative muscle strength and residual elbow flexor muscle strength between the two groups and between the injured side and the healthy side were compared. The correlation between elbow flexor manual muscle strength classification, quantitative muscle strength and nEMG parameters was analyzed.
RESULTS:
After musculocutaneous nerve injury, the percentage of residual elbow flexor muscle strength in Group B was 23.43% and that in Group A was 4.13%. Elbow flexor manual muscle strength classification was significantly correlated with the type of recruitment response, and the correlation coefficient was 0.886 (P<0.05). The quantitative elbow flexor muscle strength was correlated with the latency and amplitude of CMAP, the mean number of turns and the mean amplitude of recruitment potential, and the correlation coefficients were -0.528, 0.588, 0.465 and 0.426 (P<0.05), respectively.
CONCLUSIONS
The percentage of residual elbow flexor muscle strength can be used as the basis of muscle strength classification, and the comprehensive application of nEMG parameters can be used to infer quantitative elbow flexor muscle strength.
Humans
;
Elbow
;
Electromyography
;
Musculocutaneous Nerve
;
Elbow Joint/physiology*
;
Muscle, Skeletal
;
Muscle Strength
;
Peripheral Nerve Injuries

Result Analysis
Print
Save
E-mail