1.Is the myonuclear domain ceiling hypothesis dead?
Ferdos AMAN ; Eman EL KHATIB ; Alanood ALNEAIMI ; Ahmed MOHAMED ; Alya Sultan ALMULLA ; Amna ZAIDAN ; Jana ALSHAFEI ; Omar HABBAL ; Salma ELDESOUKI ; Rizwan QAISAR
Singapore medical journal 2023;64(7):415-422
Muscle fibres are multinuclear cells, and the cytoplasmic territory where a single myonucleus controls transcriptional activity is called the myonuclear domain (MND). MND size shows flexibility during muscle hypertrophy. The MND ceiling hypothesis states that hypertrophy results in the expansion of MND size to an upper limit or MND ceiling, beyond which additional myonuclei via activation of satellite cells are required to support further growth. However, the debate about the MND ceiling hypothesis is far from settled, and various studies show conflicting results about the existence or otherwise of MND ceiling in hypertrophy. The aim of this review is to summarise the literature about the MND ceiling in various settings of hypertrophy and discuss the possible factors contributing to a discrepancy in the literature. We conclude by describing the physiological and clinical significance of the MND ceiling limit in the muscle adaptation process in various physiological and pathological conditions.
Humans
;
Muscle Fibers, Skeletal/physiology*
;
Hypertrophy/pathology*
;
Muscle, Skeletal
2.Anti-HMGCR immune-mediated necrotizing myopathy: A case report.
Yuan Jin ZHANG ; Jing Yue MA ; Xiang Yi LIU ; Dan Feng ZHENG ; Ying Shuang ZHANG ; Xiao Gang LI ; Dong Sheng FAN
Journal of Peking University(Health Sciences) 2023;55(3):558-562
The patient was a 55-year-old man who was admitted to hospital with "progressive myalgia and weakness for 4 months, and exacerbated for 1 month". Four months ago, he presented with persistent shoulder girdle myalgia and elevated creatine kinase (CK) at routine physical examination, which fluctuated from 1 271 to 2 963 U/L after discontinuation of statin treatment. Progressive myalgia and weakness worsened seriously to breath-holding and profuse sweating 1 month ago. The patient was post-operative for renal cancer, had previous diabetes mellitus and coronary artery disease medical history, had a stent implanted by percutaneous coronary intervention and was on long-term medication with aspirin, atorvastatin and metoprolol. Neurological examination showed pressure pain in the scapularis and pelvic girdle muscles, and V- grade muscle strength in the proximal extremities. Strongly positive of anti-HMGCR antibody was detected. Muscle magnetic resonance imaging (MRI) T2-weighted image and short time inversion recovery sequences (STIR) showed high signals in the right vastus lateralis and semimembranosus muscles. There was a small amount of myofibrillar degeneration and necrosis, CD4 positive inflammatory cells around the vessels and among myofibrils, MHC-Ⅰ infiltration, and multifocal lamellar deposition of C5b9 in non-necrotic myofibrils of the right quadriceps muscle pathological manifestation. According to the clinical manifestation, imageological change, increased CK, blood specific anti-HMGCR antibody and biopsy pathological immune-mediated evidence, the diagnosis of anti-HMGCR immune-mediated necrotizing myopathy was unequivocal. Methylprednisolone was administrated as 48 mg daily orally, and was reduced to medication discontinuation gradually. The patient's complaint of myalgia and breathlessness completely disappeared after 2 weeks, the weakness relief with no residual clinical symptoms 2 months later. Follow-up to date, there was no myalgia or weakness with slightly increasing CK rechecked. The case was a classical anti-HMGCR-IMNM without swallowing difficulties, joint symptoms, rash, lung symptoms, gastrointestinal symptoms, heart failure and Raynaud's phenomenon. The other clinical characters of the disease included CK as mean levels >10 times of upper limit of normal, active myogenic damage in electromyography, predominant edema and steatosis of gluteus and external rotator groups in T2WI and/or STIR at advanced disease phase except axial muscles. The symptoms may occasionally improve with discontinuation of statins, but glucocorticoids are usually required, and other treatments include a variety of immunosuppressive therapies such as methotrexate, rituximab and intravenous gammaglobulin.
Male
;
Humans
;
Middle Aged
;
Autoantibodies
;
Myositis/diagnosis*
;
Autoimmune Diseases
;
Muscle, Skeletal/pathology*
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use*
;
Necrosis/pathology*
;
Muscular Diseases/drug therapy*
4.Magnetic resonance imaging for the diagnosis of muscular dystrophy.
Jing TANG ; Jia-Peng ZHANG ; Xue-Jun YANG ; Jing-Zi ZHONG ; Yan-Shu XIE ; Qi MENG ; Dan LAN
Chinese Journal of Contemporary Pediatrics 2022;24(11):1231-1237
OBJECTIVES:
To summarize the skeletal muscle magnetic resonance imaging (MRI) features of the lower limbs in common subtypes of muscular dystrophy (MD) and the experience in the application of MRI in the diagnosis of MD.
METHODS:
A total of 48 children with MD who were diagnosed by genetic testing were enrolled as subjects. The muscle MRI features of the lower limbs were analyzed. Cumulative fatty infiltration score was calculated for each subtype, and the correlation of cumulative fatty infiltration score with clinical indices was analyzed for Duchenne muscular dystrophy (DMD).
RESULTS:
DMD was characterized by the involvement of the gluteus maximus and the adductor magnus. Becker muscular dystrophy was characterized by the involvement of the vastus lateralis muscle. Limb-girdle muscular dystrophy was characterized by the involvement of the adductor magnus, the vastus intermedius, the vastus medialis, and the vastus lateralis muscle. For DMD, the cumulative fatty infiltration score of the lower limb muscles was significantly correlated with age, course of the disease, muscle strength, and motor function (P<0.05), while it was not significantly correlated with the serum creatine kinase level (P>0.05).
CONCLUSIONS
Different subtypes of MD have different MRI manifestations, and MRI may help with the diagnosis and assessment of MD.
Child
;
Humans
;
Muscular Dystrophy, Duchenne/diagnostic imaging*
;
Muscular Dystrophies, Limb-Girdle/pathology*
;
Muscle, Skeletal/diagnostic imaging*
;
Magnetic Resonance Imaging/methods*
;
Thigh/pathology*
5.Role of autophagy in the maintenance of skeletal muscle mass.
A-Ying LIU ; Quan-Bing ZHANG ; Yun ZHOU ; Feng WANG
China Journal of Orthopaedics and Traumatology 2022;35(4):374-378
As an important exercise and energy metabolism organ of the human body, the normal maintenance of skeletal muscle mass is essential for the body to perform normal physiological functions. The autophagy-lysosome (AL) pathway is a physiological or pathological mechanism that is ubiquitous in normal and diseased cells. It plays a key role in the maintaining of protein balance, removing damaged organelles, and the stability of internal environment. The smooth progress of the autophagy process needs to go through multiple steps, which are completed under the coordinated action of multiple factors. Autophagy maintains the muscle homeostasis of a healthy body by removing cell components such as damaged myofibrils and isolated cytoplasmic proteins. Autophagy could also provide the initial energy required for cell proliferation, promote muscle regeneration and remodeling after injury. At the same time, autophagy disorder is also an important cause of age-related skeletal muscle atrophy. Autophagy could affect the response of skeletal muscle to exercise, and increasing the level of basic autophagy is beneficial to improve the adaptive response of skeletal muscle to exercise. This article summarizes the role and pathways of autophagy in the maintenance of skeletal muscle quality, in order to provide effective rehabilitation strategies for clinical prevention and treatment of muscle atrophy.
Autophagy/physiology*
;
Exercise/physiology*
;
Humans
;
Muscle, Skeletal/pathology*
;
Muscular Atrophy/pathology*
;
Signal Transduction
7.Quantitative Evaluation of Sciatic Nerve Crush Injury with Conventional Ultrasound Combined with Shear-wave Elastography in Rabbit Models.
Ya-Qiong ZHU ; Zhuang JIN ; Si-Ming CHEN ; Ling REN ; Yue-Xiang WANG ; Xiao-Qi TIAN ; Yu-Kun LUO
Acta Academiae Medicinae Sinicae 2020;42(2):190-196
To explore the value of conventional ultrasound combined with shear-wave elastography in the quantitative evaluation of sciatic nerve crush injury in rabbit models. Forty healthy male New Zealand white rabbits were randomly divided into four groups (=10 in each group):three crush injury (CI) groups (2,4,and 8 weeks after crush) and control group (without injury). The thickness and stiffness of the crushed sciatic nerves and denervated triceps surae muscles were measured at different time points and compared with histopathologic parameters. Inter-reader variability was assessed with intraclass correlation coefficients. Compared with the control group,the inner diameters of the sciatic nerves significantly increased in the 2-week CI group [(1.65±0.34) mm (0.97±0.15) mm,=0.00] but recovered to the nearly normal level in the 8-week CI group [(1.12±0.18) mm (0.97±0.15) mm,=0.06];however,compared with control group [(8.75±1.02)kPa],the elastic modulus of the nerves increased significantly in all the CI groups [2-week:(14.77±2.53) kPa;4-week:(19.12±3.46) kPa;and 8-week:(28.39±5.26) kPa;all =0.00];pathologically,massive hyperplasia of collagen fibers were found in the nerve tissues. The thickness of denervated triceps surae muscle decreased gradually,and the elastic modulus decreased 2 weeks after injury but increased gradually in the following 6 weeks;pathologically,massive hyperplasia of collagen fibers and adipocytes infiltration were visible,along with decreased muscle wet-weight ratio and muscle fiber cross-sectional area. The inter-reader agreements were good. Conventional ultrasound combined with shear-wave elastography is feasible for the quantitative evaluation of the morphological and mechanical properties of crushed nerves and denervated muscles.
Animals
;
Crush Injuries
;
diagnostic imaging
;
Elastic Modulus
;
Elasticity Imaging Techniques
;
Male
;
Muscle, Skeletal
;
innervation
;
pathology
;
Rabbits
;
Random Allocation
;
Sciatic Nerve
;
injuries
;
Ultrasonography
8.The mechanisms and treatments of muscular pathological changes in immobilization-induced joint contracture: A literature review.
Feng WANG ; Quan-Bing ZHANG ; Yun ZHOU ; Shuang CHEN ; Peng-Peng HUANG ; Yi LIU ; Yuan-Hong XU
Chinese Journal of Traumatology 2019;22(2):93-98
The clinical treatment of joint contracture due to immobilization remains difficult. The pathological changes of muscle tissue caused by immobilization-induced joint contracture include disuse skeletal muscle atrophy and skeletal muscle tissue fibrosis. The proteolytic pathways involved in disuse muscle atrophy include the ubiquitin-proteasome-dependent pathway, caspase system pathway, matrix metalloproteinase pathway, Ca-dependent pathway and autophagy-lysosomal pathway. The important biological processes involved in skeletal muscle fibrosis include intermuscular connective tissue thickening caused by transforming growth factor-β1 and an anaerobic environment within the skeletal muscle leading to the induction of hypoxia-inducible factor-1α. This article reviews the progress made in understanding the pathological processes involved in immobilization-induced muscle contracture and the currently available treatments. Understanding the mechanisms involved in immobilization-induced contracture of muscle tissue should facilitate the development of more effective treatment measures for the different mechanisms in the future.
Atrophy
;
Autophagy
;
Calcium
;
metabolism
;
Caspases
;
metabolism
;
Connective Tissue
;
metabolism
;
pathology
;
Contracture
;
etiology
;
metabolism
;
pathology
;
therapy
;
Fibrosis
;
Humans
;
Immobilization
;
adverse effects
;
Joints
;
Lysosomes
;
metabolism
;
Matrix Metalloproteinases
;
metabolism
;
Muscle, Skeletal
;
metabolism
;
pathology
;
Proteasome Endopeptidase Complex
;
metabolism
;
Proteolysis
;
Signal Transduction
;
physiology
;
Transforming Growth Factor beta1
;
metabolism
;
Ubiquitin
;
metabolism
9.Clinical and muscle magnetic resonance image findings in patients with late-onset multiple acyl-CoA dehydrogenase deficiency.
Dao-Jun HONG ; Min ZHU ; Zi-Juan ZHU ; Lu CONG ; Shan-Shan ZHONG ; Ling LIU ; Jun ZHANG
Chinese Medical Journal 2019;132(3):275-284
BACKGROUND:
Late-onset multiple acyl-coA dehydrogenase deficiency (MADD) is an autosomal recessive inherited metabolic disorder. It is still unclear about the muscle magnetic resonance image (MRI) pattern of the distal lower limb pre- and post-treatment in patients with late-onset MADD. This study described the clinical and genetic findings in a cohort of patients with late-onset MADD, and aimed to characterize the MRI pattern of the lower limbs.
METHODS:
Clinical data were retrospectively collected from clinic centers of Peking University People's Hospital between February 2014 and February 2018. Muscle biopsy, blood acylcarnitines, and urine organic acids profiles, and genetic analysis were conducted to establish the diagnosis of MADD in 25 patients. Muscle MRI of the thigh and leg were performed in all patients before treatment. Eight patients received MRI re-examinations after treatment.
RESULTS:
All patients presented with muscle weakness or exercise intolerance associated with variants in the electron transfer flavoprotein dehydrogenase gene. Muscle MRI showed a sign of both edema-like change and fat infiltration selectively involving in the soleus (SO) but sparing of the gastrocnemius (GA) in the leg. Similar sign of selective involvement of the biceps femoris longus (BFL) but sparing of the semitendinosus (ST) was observed in the thigh. The sensitivity and specificity of the combination of either "SO+/GA-" sign or "BFL+/ST-" sign for the diagnosis of late-onset MADD were 80.0% and 83.5%, respectively. Logistic regression model supported the findings. The edema-like change in the SO and BFL muscles were quickly recovered at 1 month after treatment, and the clinical symptom was also relieved.
CONCLUSIONS
This study expands the clinical and genetic spectrums of late-onset MADD. Muscle MRI shows a distinct pattern in the lower limb of patients with late-onset MADD. The dynamic change of edema-like change in the affected muscles might be a potential biomarker of treatment response.
Adolescent
;
Adult
;
Biopsy
;
methods
;
Carnitine
;
analogs & derivatives
;
blood
;
Electron-Transferring Flavoproteins
;
genetics
;
Female
;
Hamstring Muscles
;
diagnostic imaging
;
metabolism
;
pathology
;
Humans
;
Iron-Sulfur Proteins
;
genetics
;
Magnetic Resonance Imaging
;
methods
;
Male
;
Middle Aged
;
Multiple Acyl Coenzyme A Dehydrogenase Deficiency
;
diagnostic imaging
;
genetics
;
pathology
;
Muscle, Skeletal
;
diagnostic imaging
;
metabolism
;
pathology
;
Oxidoreductases Acting on CH-NH Group Donors
;
genetics
;
Retrospective Studies
;
Young Adult
10.Relationship between Expression Changes of CB2R and Wound Age of Brain Contusion in Mice.
Jing-wei CHEN ; Peng-fei WANG ; Meng-zhou ZHANG ; Zhong-duo ZHANG ; Hao CHENG ; Ying-fu SUN ; Shu-heng WEN ; Xiang-shen GUO ; Rui ZHAO ; Da-wei GUAN
Journal of Forensic Medicine 2019;35(2):136-142
Objective To investigate the expression of cannabinoid type 2 receptor (CB2R) at different time points after brain contusion and its relationship with wound age of mice. Methods A mouse brain contusion model was established with PCI3000 Precision Cortical Impactor. Expression changes of CB2R around the injured area were detected with immunohistochemical staining, immunofluorescent staining and Western blotting at different time points. Results Immunohistochemical staining results showed that only a few cells in the cerebral cortex of the sham operated group had CB2R positive expression. The ratio of CB2R positive cells gradually increased after injury and reached the peak twice at 12 h and 7 d post-injury, followed by a decrease to the normal level 28 d post-injury. The results of Western blotting were consistent with the immunohistochemical staining results. Immunofluorescent staining demonstrated that the changes of the ratio of CB2R positive cells in neurons, CB2R positive cells in monocytes and CB2R positive cells in astrocytes to the total cell number showed a single peak pattern, which peaked at 12 h, 1 d and 7 d post-injury, respectively. Conclusion The expression of CB2R after brain contusion in neurons, monocytes and astrocytes in mice suggests that it is likely to be involved in the regulation of the biological functions of those cells. The changes in CB2R are time-dependent, which suggests its potential applicability as a biological indicator for wound age estimation of brain contusion in forensic practice.
Animals
;
Blotting, Western
;
Brain Contusion/metabolism*
;
Brain Injuries
;
Forensic Pathology
;
Mice
;
Muscle, Skeletal/pathology*
;
Receptor, Cannabinoid, CB2/metabolism*
;
Receptors, Cannabinoid
;
Time Factors
;
Wound Healing/physiology*

Result Analysis
Print
Save
E-mail