1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
		                        		
		                        			
		                        			The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases. 
		                        		
		                        		
		                        		
		                        	
2.Stability study of umbilical cord mesenchymal stem cells formulation in large-scale production
Wang-long CHU ; Tong-jing LI ; Yan SHANGGUAN ; Fang-tao HE ; Jian-fu WU ; Xiu-ping ZENG ; Tao GUO ; Qing-fang WANG ; Fen ZHANG ; Zhen-zhong ZHONG ; Xiao LIANG ; Jun-yuan HU ; Mu-yun LIU
Acta Pharmaceutica Sinica 2024;59(3):743-750
		                        		
		                        			
		                        			 Umbilical cord mesenchymal stem cells (UC-MSCs) have been widely used in regenerative medicine, but there is limited research on the stability of UC-MSCs formulation during production. This study aims to assess the stability of the cell stock solution and intermediate product throughout the production process, as well as the final product following reconstitution, in order to offer guidance for the manufacturing process and serve as a reference for formulation reconstitution methods. Three batches of cell formulation were produced and stored under low temperature (2-8 ℃) and room temperature (20-26 ℃) during cell stock solution and intermediate product stages. The storage time intervals for cell stock solution were 0, 2, 4, and 6 h, while for intermediate products, the intervals were 0, 1, 2, and 3 h. The evaluation items included visual inspection, viable cell concentration, cell viability, cell surface markers, lymphocyte proliferation inhibition rate, and sterility. Additionally, dilution and culture stability studies were performed after reconstitution of the cell product. The reconstitution diluents included 0.9% sodium chloride injection, 0.9% sodium chloride injection + 1% human serum albumin, and 0.9% sodium chloride injection + 2% human serum albumin, with dilution ratios of 10-fold and 40-fold. The storage time intervals after dilution were 0, 1, 2, 3, and 4 h. The reconstitution culture media included DMEM medium, DMEM + 2% platelet lysate, 0.9% sodium chloride injection, and 0.9% sodium chloride injection + 1% human serum albumin, and the culture duration was 24 h. The evaluation items were viable cell concentration and cell viability. The results showed that the cell stock solution remained stable for up to 6 h under both low temperature (2-8 ℃) and room temperature (20-26 ℃) conditions, while the intermediate product remained stable for up to 3 h under the same conditions. After formulation reconstitution, using sodium chloride injection diluted with 1% or 2% human serum albumin maintained a viability of over 80% within 4 h. It was observed that different dilution factors had an impact on cell viability. After formulation reconstitution, cultivation in medium with 2% platelet lysate resulted in a cell viability of over 80% after 24 h. In conclusion, the stability of cell stock solution within 6 h and intermediate product within 3 h meets the requirements. The addition of 1% or 2% human serum albumin in the reconstitution diluent can better protect the post-reconstitution cell viability. 
		                        		
		                        		
		                        		
		                        	
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
		                        		
		                        			
		                        			Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
		                        		
		                        		
		                        		
		                        	
4.The Association between Educational Attainment and the Risk of Nonalcoholic Fatty Liver Disease among Chinese Adults: Findings from the REACTION Study
Yuanyue ZHU ; Long WANG ; Lin LIN ; Yanan HUO ; Qin WAN ; Yingfen QIN ; Ruying HU ; Lixin SHI ; Qing SU ; Xuefeng YU ; Li YAN ; Guijun QIN ; Xulei TANG ; Gang CHEN ; Shuangyuan WANG ; Hong LIN ; Xueyan WU ; Chunyan HU ; Mian LI ; Min XU ; Yu XU ; Tiange WANG ; Zhiyun ZHAO ; Zhengnan GAO ; Guixia WANG ; Feixia SHEN ; Xuejiang GU ; Zuojie LUO ; Li CHEN ; Qiang LI ; Zhen YE ; Yinfei ZHANG ; Chao LIU ; Youmin WANG ; Shengli WU ; Tao YANG ; Huacong DENG ; Lulu CHEN ; Tianshu ZENG ; Jiajun ZHAO ; Yiming MU ; Weiqing WANG ; Guang NING ; Yufang BI ; Yuhong CHEN ; Jieli LU
Gut and Liver 2024;18(4):719-728
		                        		
		                        			 Background/Aims:
		                        			Low educational attainment is a well-established risk factor for nonalcoholic fatty liver disease (NAFLD) in developed areas. However, the association between educational attainment and the risk of NAFLD is less clear in China. 
		                        		
		                        			Methods:
		                        			A cross-sectional study including over 200,000 Chinese adults across mainland China was conducted. Information on education level and lifestyle factors were obtained through standard questionnaires, while NAFLD and advanced fibrosis were diagnosed using validated formulas. Outcomes included the risk of NAFLD in the general population and high probability of fibrosis among patients with NAFLD. Logistic regression analysis was employed to estimate the risk of NAFLD and fibrosis across education levels. A causal mediation model was used to explore the potential mediators. 
		                        		
		                        			Results:
		                        			Comparing with those receiving primary school education, the multi-adjusted odds ratios (95% confidence intervals) for NAFLD were 1.28 (1.16 to 1.41) for men and 0.94 (0.89 to 0.99) for women with college education after accounting for body mass index. When considering waist circumference, the odds ratios (95% CIs) were 0.94 (0.86 to 1.04) for men and 0.88 (0.80 to 0.97) for women, respectively. The proportions mediated by general and central obesity were 51.00% and 68.04% for men, while for women the proportions were 48.58% and 32.58%, respectively. Furthermore, NAFLD patients with lower educational attainment showed an incremental increased risk of advanced fibrosis in both genders. 
		                        		
		                        			Conclusions
		                        			In China, a low education level was associated with a higher risk of prevalent NAFLD in women, as well as high probability of fibrosis in both genders. 
		                        		
		                        		
		                        		
		                        	
5.Corrigendum to: The Association between Educational Attainment and the Risk of Nonalcoholic Fatty Liver Disease among Chinese Adults: Findings from the REACTION Study
Yuanyue ZHU ; Long WANG ; Lin LIN ; Yanan HUO ; Qin WAN ; Yingfen QIN ; Ruying HU ; Lixin SHI ; Qing SU ; Xuefeng YU ; Li YAN ; Guijun QIN ; Xulei TANG ; Gang CHEN ; Shuangyuan WANG ; Hong LIN ; Xueyan WU ; Chunyan HU ; Mian LI ; Min XU ; Yu XU ; Tiange WANG ; Zhiyun ZHAO ; Zhengnan GAO ; Guixia WANG ; Feixia SHEN ; Xuejiang GU ; Zuojie LUO ; Li CHEN ; Qiang LI ; Zhen YE ; Yinfei ZHANG ; Chao LIU ; Youmin WANG ; Shengli WU ; Tao YANG ; Huacong DENG ; Lulu CHEN ; Tianshu ZENG ; Jiajun ZHAO ; Yiming MU ; Weiqing WANG ; Guang NING ; Yufang BI ; Yuhong CHEN ; Jieli LU
Gut and Liver 2024;18(5):926-927
		                        		
		                        		
		                        		
		                        	
6.Association between gestational diabetes mellitus and preterm birth subtypes.
Kai Lin WANG ; Miao ZHANG ; Qing LI ; Hui KAN ; Hai Yan LIU ; Yu Tong MU ; Zong Guang LI ; Yan Min CAO ; Yao DONG ; An Qun HU ; Ying Jie ZHENG
Chinese Journal of Epidemiology 2023;44(5):809-815
		                        		
		                        			
		                        			Objective: To investigate the association between gestational diabetes mellitus (GDM) and preterm birth subtypes. Methods: Based on the cohort of pregnant women in Anqing Prefectural Hospital, the pregnant women who received prenatal screening in the first or second trimesters were recruited into baseline cohorts; and followed up for them was conducted until delivery, and the information about their pregnancy status and outcomes were obtained through electronic medical record system and questionnaire surveys. The log-binomial regression model was used to explore the association between GDM and preterm birth [iatrogenic preterm birth, spontaneous preterm birth (preterm premature rupture of membranes and preterm labor)]. For multiple confounding factors, the propensity score correction model was used to compute the adjusted association. Results: Among the 2 031 pregnant women with a singleton delivery, the incidence of GDM and preterm birth were 10.0% (204 cases) and 4.4% (90 cases) respectively. The proportions of iatrogenic preterm birth and spontaneous preterm birth in the GDM group (n=204) were 1.5% and 5.9% respectively, while the proportions in non-GDM group (n=1 827) were 0.9% and 3.2% respectively, and the difference in the proportion of spontaneous preterm birth between the two groups was significant (P=0.048). Subtypes of spontaneous preterm were further analyzed, and the results showed that the proportions of preterm premature rupture of membranes and preterm labor in the GDM group were 4.9% and 1.0% respectively, while the proportions in the non-GDM group were 2.1% and 1.1% respectively. It showed that the risk of preterm premature rupture of membranes in GDM pregnant women was 2.34 times (aRR=2.34, 95%CI: 1.16-4.69) higher than that in non-GDM pregnant women. Conclusions: Our results showed that GDM might increase the risk of preterm premature rupture of membranes. No significant increase in the proportion of preterm labor in pregnant women with GDM was found.
		                        		
		                        		
		                        		
		                        			Infant, Newborn
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Premature Birth
		                        			;
		                        		
		                        			Diabetes, Gestational
		                        			;
		                        		
		                        			Obstetric Labor, Premature
		                        			;
		                        		
		                        			Hospitals
		                        			;
		                        		
		                        			Iatrogenic Disease
		                        			
		                        		
		                        	
7.Research status and outlook of deep learning in oral and maxillofacial medical imaging.
Chinese Journal of Stomatology 2023;58(6):534-541
		                        		
		                        			
		                        			Artificial intelligence, represented by deep learning, has received increasing attention in the field of oral and maxillofacial medical imaging, which has been widely studied in image analysis and image quality improvement. This narrative review provides an insight into the following applications of deep learning in oral and maxillofacial imaging: detection, recognition and segmentation of teeth and other anatomical structures, detection and diagnosis of oral and maxillofacial diseases, and forensic personal identification. In addition, the limitations of the studies and the directions for future development are summarized.
		                        		
		                        		
		                        		
		                        	
8.Research status and outlook of deep learning in oral and maxillofacial medical imaging.
Chinese Journal of Stomatology 2023;58(6):533-539
		                        		
		                        			
		                        			Artificial intelligence, represented by deep learning, has received increasing attention in the field of oral and maxillofacial medical imaging, which has been widely studied in image analysis and image quality improvement. This narrative review provides an insight into the following applications of deep learning in oral and maxillofacial imaging: detection, recognition and segmentation of teeth and other anatomical structures, detection and diagnosis of oral and maxillofacial diseases, and forensic personal identification. In addition, the limitations of the studies and the directions for future development are summarized.
		                        		
		                        		
		                        		
		                        			Artificial Intelligence
		                        			;
		                        		
		                        			Deep Learning
		                        			;
		                        		
		                        			Diagnostic Imaging
		                        			;
		                        		
		                        			Radiography
		                        			;
		                        		
		                        			Image Processing, Computer-Assisted
		                        			
		                        		
		                        	
9.Effect of a novel phosphodiesterase 5 inhibitor, CPD1, on renal interstitial fibrosis after unilateral renal ischemia-reperfusion injury.
Ao-Lu LIU ; Zhuang LI ; Mei-Zhi LU ; Hao-Heng QIU ; Zhong-Lian XIE ; Xiao-Qing LIU ; Allan Zi-Jian ZHAO ; Yun-Ping MU ; Fang-Hong LI
Acta Physiologica Sinica 2023;75(1):1-9
		                        		
		                        			
		                        			This study was designed to evaluate the protective effect of CPD1, a novel phosphodiesterase 5 inhibitor, on renal interstitial fibrosis after unilateral renal ischemia-reperfusion injury (UIRI). Male BALB/c mice were subjected to UIRI, and treated with CPD1 once daily (i.g, 5 mg/kg). Contralateral nephrectomy was performed on day 10 after UIRI, and the UIRI kidneys were harvested on day 11. Hematoxylin-eosin (HE), Masson trichrome and Sirius Red staining methods were used to observe the renal tissue structural lesions and fibrosis. Immunohistochemical staining and Western blot were used to detect the expression of proteins related to fibrosis. HE, Sirius Red and Masson trichrome staining showed that CPD1-treated UIRI mice had lower extent of tubular epithelial cell injury and deposition of extracellular matrix (ECM) in renal interstitium compared with those in the fibrotic mouse kidneys. The results from immunohistochemistry and Western blot assay indicated significantly decreased protein expressions of type I collagen, fibronectin, plasminogen activator inhibitor-1 (PAI-1) and α-smooth muscle actin (α-SMA) after CPD1 treatment. In addition, CPD1 dose-dependently inhibited the expression of ECM-related proteins induced by transforming growth factor β1 (TGF-β1) in normal rat kidney interstitial fibroblasts (NRK-49F) and human renal tubular epithelial cell line (HK-2). In summary, the novel PDE inhibitor, CPD1, displays strong protective effects against UIRI and fibrosis by suppressing TGF-β signaling pathway and regulating the balance between ECM synthesis and degradation through PAI-1.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Extracellular Matrix Proteins
		                        			;
		                        		
		                        			Fibrosis
		                        			;
		                        		
		                        			Kidney
		                        			;
		                        		
		                        			Kidney Diseases
		                        			;
		                        		
		                        			Phosphodiesterase 5 Inhibitors
		                        			;
		                        		
		                        			Plasminogen Activator Inhibitor 1
		                        			
		                        		
		                        	
10.Cerebral toxoplasmosis after hematopoietic stem cell transplantation in two children with thalassemia.
Qun Qian NING ; Wen Qiang XIE ; Qiao Chuan LI ; Lian Jin LIU ; Zhong Ming ZHANG ; Ling Ling SHI ; Mei Qing WU ; Zw Yan SHI ; Zhong Qing LI ; Yong Rong LAI ; Mu Liang JIANG ; Mei Ai LIAO ; Rong Rong LIU
Chinese Journal of Pediatrics 2023;61(3):271-273
            
Result Analysis
Print
Save
E-mail