1.Facilitation of spinal α-motoneuron excitability by histamine and the underlying ionic mechanisms.
Guan-Yi WU ; Qian-Xing ZHUANG ; Xiao-Yang ZHANG ; Hong-Zhao LI ; Jian-Jun WANG ; Jing-Ning ZHU
Acta Physiologica Sinica 2019;71(6):809-823
Spinal α-motoneurons directly innervate skeletal muscles and function as the final common path for movement and behavior. The processes that determine the excitability of motoneurons are critical for the execution of motor behavior. In fact, it has been noted that spinal motoneurons receive various neuromodulatory inputs, especially monoaminergic one. However, the roles of histamine and hypothalamic histaminergic innervation on spinal motoneurons and the underlying ionic mechanisms are still largely unknown. In the present study, by using the method of intracellular recording on rat spinal slices, we found that activation of either H or H receptor potentiated repetitive firing behavior and increased the excitability of spinal α-motoneurons. Both of blockage of K channels and activation of Na-Ca exchangers were involved in the H receptor-mediated excitation on spinal motoneurons, whereas the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels were responsible for the H receptor-mediated excitation. The results suggest that, through switching functional status of ion channels and exchangers coupled to histamine receptors, histamine effectively biases the excitability of the spinal α-motoneurons. In this way, the hypothalamospinal histaminergic innervation may directly modulate final motor outputs and actively regulate spinal motor reflexes and motor execution.
Animals
;
Histamine
;
pharmacology
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
;
metabolism
;
Motor Neurons
;
drug effects
;
physiology
;
Rats
;
Receptors, Histamine H2
;
metabolism
;
Sodium-Calcium Exchanger
;
metabolism
2.Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model.
Yanyan WANG ; Yong WANG ; Junhua LIU ; Xiaomin WANG
Neuroscience Bulletin 2018;34(3):476-484
Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson's disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.
Adrenergic Agents
;
toxicity
;
Animals
;
Apomorphine
;
pharmacology
;
Disease Models, Animal
;
Dopamine Agonists
;
pharmacology
;
Electroacupuncture
;
methods
;
Functional Laterality
;
drug effects
;
Male
;
Medial Forebrain Bundle
;
injuries
;
Motor Activity
;
drug effects
;
physiology
;
Neurons
;
drug effects
;
metabolism
;
Oxidopamine
;
toxicity
;
Parkinson Disease, Secondary
;
chemically induced
;
physiopathology
;
therapy
;
Rats
;
Rats, Sprague-Dawley
;
Subthalamic Nucleus
;
drug effects
;
metabolism
;
pathology
;
Tyrosine 3-Monooxygenase
;
metabolism
;
Up-Regulation
;
drug effects
;
physiology
;
Vesicular Glutamate Transport Protein 1
;
metabolism
3.Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.
Da Un JEONG ; Jin Hwan OH ; Ji Eun LEE ; Jihyeon LEE ; Zang Hee CHO ; Jin Woo CHANG ; Won Seok CHANG
Yonsei Medical Journal 2016;57(1):165-172
PURPOSE: Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. MATERIALS AND METHODS: We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by 18F-2-fluoro-2-deoxyglucose positron emission tomography. RESULTS: During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. CONCLUSION: Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.
Acetylcholine/metabolism
;
Alzheimer Disease
;
Animals
;
Antibodies, Monoclonal/*pharmacology
;
Basal Forebrain/*drug effects/metabolism
;
Cholinergic Agents/administration & dosage/*pharmacology
;
Cholinergic Neurons/*drug effects/metabolism
;
Fluorodeoxyglucose F18
;
GABAergic Neurons/*drug effects/metabolism
;
Glucose/*metabolism
;
Gyrus Cinguli/*drug effects/metabolism
;
Humans
;
Injections
;
Maze Learning
;
Motor Activity/physiology
;
Positron-Emission Tomography
;
Rats
;
Ribosome Inactivating Proteins, Type 1/*pharmacology
4.Protective effect of alkaloids from Piper longum in rat dopaminergic neuron injury of 6-OHDA-induced Parkinson's disease.
Li ZHENG ; Hao WANG ; Yin-Ying BA ; Hao-Long LIU ; Meng WANG ; Wei-Wei GUO ; Xia WU ; Hui YANG
China Journal of Chinese Materia Medica 2014;39(9):1660-1665
OBJECTIVETo discuss the protective effect of alkaloids from Piper longum (PLA) in rat dopaminergic neuron injury of 6-OHDA-induced Parkinson's disease and its possible mechanism.
METHODThe rat PD model was established by injecting 6-OHDA into the unilateral striatum with a brain solid positioner. The PD rats were divided into the PLA group (50 mg x kg(-1) x d(-1)), the madorpa group (50 mg x kg(-1) x d(-1)) and the model group, with 15 rats in each group. All of the rats were orally given drugs once a day for 6 weeks. Meanwhile, other 15 rats were randomly selected as the sham operation group, and only injected with normal saline in the unilateral striatum. The behavioral changes were observed with the apomorphine (APO)-induced rotation and rotary rod tests. The number of tyrosine hydroxylase (TH)-positive cells in rat substantia nigra and the density of TH-positive fibers in striatum were detected by tyrosine hydroxylase immunohistochemistry. The content of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione (GSH), catalase (CAT), malondialdehyde (MDA), nitric oxide (NO) and nitric oxide synthase (NOS) in rat substantia nigra and striatum were measured by the spectrophotometric method.
RESULTAfter being induced by APO, PD rats showed obvious rotation behaviors, with decreased time stay on rotary rod and significant reduction in the number of TH-positive cells in sustantia nigra and the density of TH-positive fibers in striatum. The activities of SOD, GSH-Px, CAT, the content of GSH and the total antioxidant capacity significantly decreased, whereas the activities of NOS and the content of MDA, NO significantly increased. PLA could significantly improve the behavioral abnormality of PD rats and increase the number of TH-positive cells in sustantia nigra and the density of TH-positive fibers in striatum. It could up-regulate the activities of SOD, GSH-Px, CAT, the content of GSH and the total antioxidant capacity, and decrease the content of NOS and the content of MDA, NO.
CONCLUSIONAlkaloids from P. longum shows the protective effect in substantia nigra cells of 6-OHDA-induced PD model rats. Its mechanism may be related with their antioxidant activity.
Administration, Oral ; Alkaloids ; administration & dosage ; pharmacology ; Animals ; Apomorphine ; pharmacology ; Catalase ; metabolism ; Dopamine Agonists ; pharmacology ; Dopaminergic Neurons ; drug effects ; metabolism ; pathology ; Glutathione ; metabolism ; Glutathione Peroxidase ; metabolism ; Male ; Malondialdehyde ; metabolism ; Motor Activity ; drug effects ; Neostriatum ; drug effects ; metabolism ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase ; metabolism ; Oxidopamine ; Parkinson Disease, Secondary ; chemically induced ; physiopathology ; prevention & control ; Piper ; chemistry ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra ; drug effects ; metabolism ; Superoxide Dismutase ; metabolism ; Tyrosine 3-Monooxygenase ; metabolism
5.Therapeutic effect of a natural squamosamide derivative FLZ on Parkinson's disease model mice induced by LPS plus MPTP.
Ling-Hong YU ; Huai-Ling WEI ; Xiu-Qi BAO ; Dan ZHANG ; Hua SUN
Acta Pharmaceutica Sinica 2013;48(10):1557-1562
The aim of this study is to investigate the protective effect of N-[2-(4-hydroxyphenyl)ethyl]-2-(2, 5-dimethoxyphenyl)-3-(3-methoxy-4-hydroxyphenyl)acrylamide (FLZ), a novel synthetic squamosamide cyclic derivative, against Parkinson's disease (PD) model mice induced by the inflammatory bacterial endotoxin, lipopolysaccharides (LPS) and the neurotoxin 1-methy-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). C57/BL mice were ip injected LPS (5 mg x kg(-1)) once. One week following the LPS injection, mice received a subcutaneous injection of MPTP (25 mg x kg(-1)) once daily for 2 days. Eight weeks later, FLZ (25, 50 and 75 mg x kg(-1)) was orally administered to mice once daily for 60 days. The motor ability of the mice was evaluated by rod climbing test and footprint test. The dopamine (DA) levels in mouse striatum were determined by high performance liquid chromatography system. The tyrosine hydroxylase (TH)-positive cells were showed by immunohistochemical analysis. FLZ treatment significantly improved motor dysfunction of mice challenged by LPS plus MPTP. The increase of TH-positive cell numbers and elevation of DA levels may be contributed to the beneficial effects of FLZ on motor behavior. This study showed FLZ has significant therapeutic effect on LPS plus MPTP induced chronic PD model, which indicates its potential as a new candidate drug to treat PD.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
;
3,4-Dihydroxyphenylacetic Acid
;
metabolism
;
Acrylamides
;
pharmacology
;
Animals
;
Caffeic Acids
;
pharmacology
;
Corpus Striatum
;
metabolism
;
Dopamine
;
metabolism
;
Homovanillic Acid
;
metabolism
;
Lipopolysaccharides
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Motor Activity
;
drug effects
;
Neurons
;
drug effects
;
metabolism
;
Parkinson Disease, Secondary
;
chemically induced
;
metabolism
;
pathology
;
physiopathology
;
Random Allocation
;
Tyrosine 3-Monooxygenase
;
metabolism
6.Protective effect of nicotinamide in a mouse Parkinson's disease model.
Jing XU ; Sheng-quan XU ; Jie LIANG ; Yuan LU ; Jian-hong LUO ; Jing-hua JIN
Journal of Zhejiang University. Medical sciences 2012;41(2):146-152
OBJECTIVETo examine the protective effect of nicotinamide on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) in mouse model and its mechanisms.
METHODSParkinson's disease was induced by injection of MPTP in adult male C57BL/6 mice, nicotinamide (500 mg/kg,i.p.) was given prior to subacute (30 mg/kg/d × 5 d,i.p.) MPTP administration. Locomotor activities, striatal dopamine levels, lactate dehydrogenase (LDH) and NO synthase (NOS) activities of whole brains and striatum were analyzed at d5 after last MPTP injections.
RESULTSPretreatment with nicotinamide significantly improved the locomotor activity in the open-field test (P<0.01), but not in the swimming test and grip & climbing test. Nicotinamide administration resulted in sparing striatal dopamine levels from MPTP-induced dopamine depletion. There was no significant difference in LDH and NOS activities in the whole brains among the groups; but the activities in the striatum were drastically elevated after MPTP treatment. Nicotinamide pretreatment markedly inhibited MPTP-induced LDH and NOS activities (P<0.01) and showed no significant difference compared to controls (P>0.05).
CONCLUSIONNicotinamide protects dopaminergic neurons against MPTP-induced neurodegeneration,which suggests that the neuroprotective effects be associated with the inhibition of cell injuries and NOS activities.
Animals ; Corpus Striatum ; drug effects ; metabolism ; Disease Models, Animal ; Dopamine ; metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Motor Activity ; drug effects ; physiology ; Neurons ; drug effects ; metabolism ; Niacinamide ; pharmacology ; Parkinson Disease ; drug therapy ; metabolism
7.Effects of etomidate on descending activation of motoneurons in neonatal rat spinal cord in vitro.
Acta Physiologica Sinica 2012;64(2):155-162
Descending activation pathways in spinal cord are essential for inducing and modulating autokinesis, but whether the effects of general anesthetic agents on the descending pathways are involved in initiation of skeletal muscle relaxation or not, as well as the underlying mechanisms on excitatory amino acid receptors still remain unclear. In order to explore the mechanisms underlying etomidate's effects on descending activation of spinal cord motoneurons (MNs), the conventional intracellular recording techniques in MNs of spinal cord slices isolated from neonatal rats (7-14 days old) were performed to observe and analyze the actions of etomidate on excitatory postsynaptic potential (EPSP) elicited by electrical stimulation of the ipsilateral ventrolateral funiculus (VLF), which was named VLF-EPSP. Etomidate at 0.3, 3.0 (correspond to clinical concentration) and 30.0 µmol/L were in turn perfused to MN with steadily recorded VLF-EPSPs. At low concentration (0.3 µmol/L), etomidate increased duration, area under curve and/or half-width of VLF-EPSP and N-methyl-D-aspartate (NMDA) receptor-mediated VLF-EPSP component (all P < 0.05), as well as amplitude, area under curve and half-width of non-NMDA receptor-mediated VLF-EPSP component (all P < 0.05), or decreased amplitude and area under curve of VLF-EPSP, its NMDA receptor component, and non-NMDA receptor component (all P < 0.05). However, at 3.0 and 30.0 µmol/L, it was only observed that etomidate exerted inhibitory effects on amplitude and/or duration and/or area under curve of VLF-EPSP (P < 0.05 or P < 0.01) with concentration- and time-dependent properties. Moreover, NMDA receptor-mediated VLF-EPSP component was more sensitive to etomidate at ≥ 3.0 µmol/L than non-NMDA receptor-mediated VLF-EPSP component did. As a conclusion, etomidate, at different concentrations, exerts differential effects on VLF-EPSP and glutamate receptors mediating the synaptic transmission of descending activation of MNs in neonatal rat spinal cord in vitro.
Anesthetics, Intravenous
;
pharmacology
;
Animals
;
Animals, Newborn
;
Efferent Pathways
;
physiology
;
Electric Stimulation
;
Etomidate
;
pharmacology
;
Excitatory Postsynaptic Potentials
;
drug effects
;
physiology
;
Female
;
In Vitro Techniques
;
Male
;
Motor Neurons
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, N-Methyl-D-Aspartate
;
drug effects
;
physiology
;
Spinal Cord
;
physiology
8.Effects of low-dose chlorpyrifos exposure on dopaminergic neurons in the midbrain substantia nigra and neural behavioral development in neonatal rats.
Jie ZHANG ; Ling-Ling ZHAO ; Zhi-Ping HU ; Jun ZHOU ; Li DENG ; Fen GU ; Hong-Mei DAI ; Min HUANG
Chinese Journal of Contemporary Pediatrics 2011;13(12):989-994
OBJECTIVETo explore the effects of low-dose chlorpyrifos (CPF) exposure on dopaminergic (DA) neurons in the midbrain substantia nigra and neural behavioral development in neonatal rats.
METHODSPostnatal 11 day old Sprague-Dawley rats were randomly assigned into CPF, menstruum dimethysulfoxide (DMSO) and normal saline (NS) groups. The rats in the CPF group were injected with low-dose CPF (5 mg/kg?d) on postnatal days 11-14. The two control groups were injected with DMSO or NS respectively. The rats were sacrificed on postnatal days 15, 20, 30, and 60. Body weight gain, outward appearance of brain tissue, the coefficient of brain and the water content of brain tissue were measured. Tyrosine hydroxylase (TH) expression in DA neurons in the midbrain substantial nigra was examined by immunohistochemical straining. Immune electron microscopy was used to examine the subcellular structure of DA neurons. Open field test, grip strength test, slope test and Morris water maze test were used to examine the neurobehavioral changes.
RESULTSThe outward appearance of brain tissue was normal in the three groups. There were no significant differences in the absolute value of body weight gain, the coefficient of brain and the water content of brain tissue among the three groups. CPF exposure decreased the level of TH immunoreactivity (P<0.05) in the substantia nigra of CPF group since postnatal day 30 compared with the DMSO and NS groups. The subcellular structures of some DA neurons in the CPF group were impaired. Decreased motor activity and learning and memory impairments were observed in the CPF group compared with those in the DMSO and NS groups (P<0.05) since postnatal day 30.
CONCLUSIONSCPF exposure during the neonatal period can cause long-term motor activity and learning and memory impairments in accompany with DA neurons damage in the midbrain substantia nigra.
Animals ; Animals, Newborn ; Behavior, Animal ; drug effects ; Chlorpyrifos ; toxicity ; Dopaminergic Neurons ; drug effects ; Female ; Insecticides ; toxicity ; Learning ; drug effects ; Male ; Motor Activity ; drug effects ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra ; drug effects
9.Tumor shrinkage by cyclopamine tartrate through inhibiting hedgehog signaling.
Qipeng FAN ; Dongsheng GU ; Miao HE ; Hailan LIU ; Tao SHENG ; Guorui XIE ; Ching-Xin LI ; Xiaoli ZHANG ; Brandon WAINWRIGHT ; Arash GARROSSIAN ; Massoud GARROSSIAN ; Dale GARDNER ; Jingwu XIE
Chinese Journal of Cancer 2011;30(7):472-481
The link of hedgehog (Hh) signaling activation to human cancer and synthesis of a variety of Hh signaling inhibitors raise great expectation that inhibiting Hh signaling may be effective in human cancer treatment. Cyclopamine (Cyc), an alkaloid from the Veratrum plant, is a specific natural product inhibitor of the Hh pathway that acts by targeting smoothened (SMO) protein. However, its poor solubility, acid sensitivity, and weak potency relative to other Hh antagonists prevent the clinical development of Cyc as a therapeutic agent. Here, we report properties of cyclopamine tartrate salt (CycT) and its activities in Hh signaling-mediated cancer in vitro and in vivo. Unlike Cyc, CycT is water soluble (5-10 mg/mL). The median lethal dose (LD50) of CycT was 62.5 mg/kg body weight compared to 43.5 mg/kg for Cyc, and the plasma half-life (T1/2) of CycT was not significantly different from that of Cyc. We showed that CycT had a higher inhibitory activity for Hh signaling-dependent motor neuron differentiation than did Cyc (IC50 = 50 nmol/L for CycT vs. 300 nmol/L for Cyc). We also tested the antitumor effectiveness of these Hh inhibitors using two mouse models of basal cell carcinomas (K14cre:Ptch1(neo/neo) and K14cre:SmoM2(YFP)). After topical application of CycT or Cyc daily for 21 days, we found that all CycT-treated mice had tumor shrinkage and decreased expression of Hh target genes. Taken together, we found that CycT is an effective inhibitor of Hh signaling-mediated carcinogenesis.
Animals
;
Carcinoma, Basal Cell
;
pathology
;
Cell Differentiation
;
drug effects
;
Embryonic Stem Cells
;
cytology
;
Hedgehog Proteins
;
antagonists & inhibitors
;
metabolism
;
Mice
;
Motor Neurons
;
cytology
;
Plants, Medicinal
;
chemistry
;
Receptors, G-Protein-Coupled
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
drug effects
;
Skin Neoplasms
;
pathology
;
Smoothened Receptor
;
Solubility
;
Tartrates
;
blood
;
pharmacology
;
Tumor Burden
;
drug effects
;
Veratrum
;
chemistry
;
Veratrum Alkaloids
;
blood
;
isolation & purification
;
pharmacology
10.The effect of 2,5-hexanedione on nerve growth factor in sciatic nerve of rats and VSC4.1 cell.
Qing-Jun LIU ; Yan-Shu ZHANG ; Qiang LIU ; Hua-Wei DUAN ; Yu-Fei DAI ; Qing LIU ; Yong NIU ; Hong CHEN ; Ping BIN ; Feng-Sheng HE ; Yu-Xin ZHENG
Chinese Journal of Preventive Medicine 2010;44(1):18-23
OBJECTIVETo explore the effect of 2,5-hexanedione (2,5-HD) on the levels of nerve growth factor (NGF) in sciatic nerve of rats and motor-neurons.
METHODA total of 50 Wistar rats were randomly designed into five groups and intoxicated with 400 mgxkg(-1)xd(-1) 2,5-HD for 0, 7, 14, 21, 28 d. Immunohistochemistry and real-time PCR were used to detect the levels of NGF and NGF mRNA. Motor neuron VSC4.1 cells were administrated with 0, 2.5, 5.0, 10.0, 20.0 mmol/L 2,5-HD for 24 h and 10.0 mmol/L 2,5-HD was chosen to intoxicated VSC4.1 cells for 0, 1, 3, 6, 12, 24, 48 h respectively. Immunofluorescence technique was selected to detect the levels of NGF.
RESULTSThe NGF level in sciatic nerve of rats administrated with 400 mgxkg(-1)xd(-1) 2,5-HD showed increase tendency at begin and then decrease after exposure. The NGF mRNA level in 14 d (2(-DeltaDeltaCt)= 3.46), 21 d (2(-DeltaDeltaCt)= 5.28) and 28 d (2(-DeltaDeltaCt)= 3.10) were higher than those in 0 d (2(-DeltaDeltaCt)= 1) and 7 d (2(-DeltaDeltaCt)= 0.78). In vitro tests of VSC4.1 cells showed that NGF levels in 5.0 mmol/L (43.24 +/- 7.52), 10.0 mmol/L (43.48 +/- 10.86) and 20.0 mmol/L (63.13 +/- 10.68) were higher than those in 0 mmol/L (16.32 +/- 4.20)(q values were 19.92, 19.72, 32.78, respectively, P < 0.01) and 2.5 mmol/L (19.78 +/- 2.66) (q values were 17.50, 17.42, 30.63, respectively, P < 0.01) in 24 h and the NGF level in 20.0 mmol/L was higher than those in 5.0 mmol/L (q = 13.04, P < 0.01) and 10.0 mmol/L (q = 11.71, P < 0.01). The NGF levels of VSC4.1 cells with 10.0 mmol/L 2,5-HD in 6 h (18.66 +/- 2.89), 12 h (23.14 +/- 6.08), 24 h (27.66 +/- 6.11) and 48 h (17.25 +/- 3.05) were increased compared with that in 0 h (10.18 +/- 1.81) (q values were 9.64, 15.74, 21.76, 8.50, respectively, P < 0.01), 1 h (9.31 +/- 1.28) (q values were 10.28, 16.17, 21.95, 9.20, respectively, P < 0.01) and 3 h (10.44 +/- 2.13) (q values were 9.25, 15.24, 21.17, 8.10, respectively, P < 0.01), and NGF levels in 12 h and 24 h increased compared with those in 6 h (q values were 5.24, 10.77, respectively, P < 0.01) and 48 h (q values were 7.31, 13.26, respectively, P < 0.01).
CONCLUSION2,5-HD could increase NGF levels in sciatic nerve of rats and motor-neurons, and the dose or time dependent effects were observed in this study.
Animals ; Cell Line ; Hexanones ; toxicity ; Male ; Motor Neurons ; drug effects ; metabolism ; Nerve Growth Factor ; metabolism ; Rats ; Rats, Wistar ; Sciatic Nerve ; drug effects ; metabolism

Result Analysis
Print
Save
E-mail