1.The Secondary Motor Cortex-striatum Circuit Contributes to Suppressing Inappropriate Responses in Perceptual Decision Behavior.
Jing LIU ; Dechen LIU ; Xiaotian PU ; Kexin ZOU ; Taorong XIE ; Yaping LI ; Haishan YAO
Neuroscience Bulletin 2023;39(10):1544-1560
The secondary motor cortex (M2) encodes choice-related information and plays an important role in cue-guided actions. M2 neurons innervate the dorsal striatum (DS), which also contributes to decision-making behavior, yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear. Using mice performing a visual Go/No-Go task, we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm (FA) rate to the reward-irrelevant No-Go stimulus. The choice signal of M2 neurons correlated with behavioral performance, and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS. By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs, we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus, and inactivating their early responses increased the FA rate. These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.
Mice
;
Animals
;
Motor Cortex
;
Corpus Striatum/physiology*
;
Neostriatum
;
Neurons/physiology*
;
Reaction Time
2.Study on after-effect of electroacupuncture with different time intervals on corticospinal excitability in primary motor cortex.
Meng-Meng XIE ; Zi-Zhen CHEN ; Wei-Li CHENG ; Jian-Peng HUANG ; Neng-Gui XU ; Jian-Hua LIU
Chinese Acupuncture & Moxibustion 2023;43(11):1239-1245
OBJECTIVES:
To compare the effects of electroacupuncture (EA) with different time intervals on corticospinal excitability of the primary motor cortex (M1) and the upper limb motor function in healthy subjects and observe the after-effect rule of acupuncture.
METHODS:
Self-comparison before and after intervention design was adopted. Fifteen healthy subjects were included and all of them received three stages of trial observation, namely EA0 group (received one session of EA), EA6h group (received two sessions of EA within 1 day, with an interval of 6 h) and EA48h group (received two sessions of EA within 3 days, with an interval of 48 h). The washout period among stages was 1 week. In each group, the needles were inserted perpendicularly at Hegu (LI 4) on the left side, 23 mm in depth and at a non-acupoint, 0.5 cm nearby to the left side of Hegu (LI 4), separately. Han's acupoint nerve stimulator (HANS-200A) was attached to these two needles, with continuous wave and the frequency of 2 Hz. The stimulation intensity was exerted higher than the exercise threshold (local muscle twitching was visible, and pain was tolerable by healthy subjects, 1-2 mA ). The needles were retained for 30 min. Using the single pulse mode of transcranial magnetic stimulation (TMS) technique, before the first session of EA (T0) and at the moment (T1), in 2 h (T2) and 24 h (T3) after the end of the last session of EA, on the left first dorsal interosseous muscle, the amplitude, latency (LAT), resting motor threshold (rMT) of motor evoked potentials (MEPs) and the completion time of grooved pegboard test (GPT) were detected. Besides, in the EA6h group, TMS was adopted to detect the excitability of M1 (amplitude, LAT and rMT of MEPs) before the last session of EA (T0*).
RESULTS:
The amplitude of MEPs at T1 and T2 in the EA0 group, at T0* in the EA6h group and at T1, T2 and T3 in the EA48h group was higher when compared with the value at T0 in each group separately (P<0.001). At T1, the amplitude of MEPs in the EA0 group and the EA48h group was higher than that in the EA6h group (P<0.001, P<0.01); at T2, it was higher in the EA0 group when compared with that in the EA6h group (P<0.01); at T3, the amplitude in the EA0 group and the EA6h group was lower than that of the EA48h group (P<0.001). The LAT at T1 was shorter than that at T0 in the three groups (P<0.05), and the changes were not obvious at the rest time points compared with that at T0 (P > 0.05). The GPT completion time of healthy subjects in the EA0 group and the EA48h group at T1, T2 and T3 was reduced in comparison with that at T0 (P<0.001). The completion time at T3 was shorter than that at T0 in the EA6h group (P<0.05); at T2, it was reduced in the EA48h group when compared with that of the EA6h group (P<0.05). There were no significant differences in rMT among the three groups and within each group (P>0.05).
CONCLUSIONS
Under physiological conditions, EA has obvious after-effect on corticospinal excitability and upper limb motor function. The short-term interval protocol (6 h) blocks the after-effect of EA to a certain extent, while the long-term interval protocol (48 h) prolongs the after-effect of EA.
Humans
;
Electroacupuncture
;
Motor Cortex/physiology*
;
Transcranial Magnetic Stimulation/methods*
;
Upper Extremity
;
Exercise
;
Muscle, Skeletal/physiology*
3.Neural Mechanism Underlying Task-Specific Enhancement of Motor Learning by Concurrent Transcranial Direct Current Stimulation.
Ying WANG ; Jixian WANG ; Qing-Fang ZHANG ; Ke-Wei XIAO ; Liang WANG ; Qing-Ping YU ; Qing XIE ; Mu-Ming POO ; Yunqing WEN
Neuroscience Bulletin 2023;39(1):69-82
The optimal protocol for neuromodulation by transcranial direct current stimulation (tDCS) remains unclear. Using the rotarod paradigm, we found that mouse motor learning was enhanced by anodal tDCS (3.2 mA/cm2) during but not before or after the performance of a task. Dual-task experiments showed that motor learning enhancement was specific to the task accompanied by anodal tDCS. Studies using a mouse model of stroke induced by middle cerebral artery occlusion showed that concurrent anodal tDCS restored motor learning capability in a task-specific manner. Transcranial in vivo Ca2+ imaging further showed that anodal tDCS elevated and cathodal tDCS suppressed neuronal activity in the primary motor cortex (M1). Anodal tDCS specifically promoted the activity of task-related M1 neurons during task performance, suggesting that elevated Hebbian synaptic potentiation in task-activated circuits accounts for the motor learning enhancement. Thus, application of tDCS concurrent with the targeted behavioral dysfunction could be an effective approach to treating brain disorders.
Transcranial Direct Current Stimulation/methods*
;
Motor Cortex/physiology*
;
Neurons
;
Transcranial Magnetic Stimulation
4.From Parametric Representation to Dynamical System: Shifting Views of the Motor Cortex in Motor Control.
Tianwei WANG ; Yun CHEN ; He CUI
Neuroscience Bulletin 2022;38(7):796-808
In contrast to traditional representational perspectives in which the motor cortex is involved in motor control via neuronal preference for kinetics and kinematics, a dynamical system perspective emerging in the last decade views the motor cortex as a dynamical machine that generates motor commands by autonomous temporal evolution. In this review, we first look back at the history of the representational and dynamical perspectives and discuss their explanatory power and controversy from both empirical and computational points of view. Here, we aim to reconcile the above perspectives, and evaluate their theoretical impact, future direction, and potential applications in brain-machine interfaces.
Biomechanical Phenomena
;
Brain-Computer Interfaces
;
Motor Cortex/physiology*
;
Neurons/physiology*
5.Research progress on analysis methods in electroencephalography-electromyography synchronous coupling.
Sujiao LI ; Su LIU ; He LAN ; Hongliu YU
Journal of Biomedical Engineering 2019;36(2):334-337
The motor nervous system transmits motion control information through nervous oscillations, which causes the synchronous oscillatory activity of the corresponding muscle to reflect the motion response information and give the cerebral cortex feedback, so that it can sense the state of the limbs. This synchronous oscillatory activity can reflect connectivity information of electroencephalography-electromyography (EEG-EMG) functional coupling. The strength of the coupling is determined by various factors including the strength of muscle contraction, attention, motion intention etc. It is very significant to study motor functional evaluation and control methods to analyze the changes of EEG-EMG synchronous coupling caused by different factors. This article mainly introduces and compares coherence and Granger causality of linear methods, the mutual information and transfer entropy of nonlinear methods in EEG-EMG synchronous coupling, and summarizes the application of each method, so that researchers in related fields can understand the current research progress on analysis methods of EEG-EMG synchronous systematically.
Electroencephalography
;
Electromyography
;
Humans
;
Motor Cortex
;
physiology
;
Muscle, Skeletal
;
physiology
;
Research
6.A new method for quantifying mitochondrial axonal transport.
Mengmeng CHEN ; Yang LI ; Mengxue YANG ; Xiaoping CHEN ; Yemeng CHEN ; Fan YANG ; Sheng LU ; Shengyu YAO ; Timothy ZHOU ; Jianghong LIU ; Li ZHU ; Sidan DU ; Jane Y WU
Protein & Cell 2016;7(11):804-819
Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named "MitoQuant". This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.
Animals
;
Axonal Transport
;
physiology
;
Cerebral Cortex
;
cytology
;
metabolism
;
Drosophila melanogaster
;
cytology
;
metabolism
;
Embryo, Mammalian
;
Gene Expression
;
Lab-On-A-Chip Devices
;
Microscopy, Confocal
;
Mitochondria
;
metabolism
;
ultrastructure
;
Motor Neurons
;
metabolism
;
ultrastructure
;
Movement
;
Mutation
;
Primary Cell Culture
;
RNA-Binding Protein FUS
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Software
7.Motor Cortex Functional Mapping Using Electrocorticography.
Qionglin FU ; Tao JIANG ; Yueshan HUANG
Journal of Biomedical Engineering 2015;32(4):881-886
The main shortcomings of using electrocortical stimulation (ECS) in identifying the motor functional area around the focus in neurosurgery are certainly time-consuming, possibly cerebral cortex injuring and perhaps triggering epilepsy. To solve these problems, we in our research presented an intraoperative motor cortex functional mapping based on electrocorticography (ECoG). At first, using power spectrum estimation, we analyzed the characteristic of ECoG which was related to move task, and selected Mu rhythm as the move-related feature. Then we extracted the feature from original ECoG by multi-resolution wavelet analysis. By calculating the sum value of feature in every channel and observing the distribution of these sum values, we obtained the correlation between the cortex area under the electrode and motor cortex functional area. The results showed that the distribution of the relationship between the cortex under the electrode and motor cortex functional area was almost consistent with those identified by ECS which was called as the gold-standard. It indicated that this method was basically feasible, and it just needed five minutes totally. In conclusion, ECoG-based and passive identification of motor cortical function may serve as a useful adjunct to ECS in the intraoperative mapping.
Brain Mapping
;
Electric Stimulation
;
Electrocorticography
;
Electrodes, Implanted
;
Electroencephalography
;
Epilepsy
;
Humans
;
Motor Cortex
;
physiology
;
Wavelet Analysis
8.Analysis on Bilateral Hindlimb Mapping in Motor Cortex of the Rat by an Intracortical Microstimulation Method.
Han Yu SEONG ; Ji Young CHO ; Byeong Sam CHOI ; Joong Kee MIN ; Yong Hwan KIM ; Sung Woo ROH ; Jeong Hoon KIM ; Sang Ryong JEON
Journal of Korean Medical Science 2014;29(4):587-592
Intracortical microstimulation (ICMS) is a technique that was developed to derive movement representation of the motor cortex. Although rats are now commonly used in motor mapping studies, the precise characteristics of rat motor map, including symmetry and consistency across animals, and the possibility of repeated stimulation have not yet been established. We performed bilateral hindlimb mapping of motor cortex in six Sprague-Dawley rats using ICMS. ICMS was applied to the left and the right cerebral hemisphere at 0.3 mm intervals vertically and horizontally from the bregma, and any movement of the hindlimbs was noted. The majority (80%+/-11%) of responses were not restricted to a single joint, which occurred simultaneously at two or three hindlimb joints. The size and shape of hindlimb motor cortex was variable among rats, but existed on the convex side of the cerebral hemisphere in all rats. The results did not show symmetry according to specific joints in each rats. Conclusively, the hindlimb representation in the rat motor cortex was conveniently mapped using ICMS, but the characteristics and inter-individual variability suggest that precise individual mapping is needed to clarify motor distribution in rats.
Animals
;
*Brain Mapping
;
Electric Stimulation
;
Electrodes
;
Hindlimb/*physiology
;
Male
;
Motor Cortex/*physiology
;
Rats
;
Rats, Sprague-Dawley
9.EEG-EMG coherence analysis of different hand motions in healthy subjects.
Yunping LI ; Li LI ; Xuyuan ZHENG
Journal of Biomedical Engineering 2014;31(5):962-966
It is the functional connectivity between motor cortex and muscle that directly relates to the rehabilitation of the dysfunction in upper limbs and neuromuscular activity status, which can be detected by electroencephalogram-electromyography (EEG-EMG) coherence analysis. In this study, based on coherence analysis method, we process the acquisition signals which consist of 9 channel EEG signal from motor cortex and 4 channel EMG signal from forearm, by using 4 groups of hand motions in the healthy subjects, including flexor digitorum, extensor digitorum, wrist flexion, and wrist extension. The results showed that in the β-band, the coherence coefficients between C3 and flexor digitorum (FD) was greater than extensor digitorum (ED) in the right hand flexor digitorum movement; the coherence coefficients between C3 and ED was greater than FD in the right hand extensor digitorum movement; the coherence coefficients between C3 and flexor carpi ulnaris (FCU) was greater than extensor carpi radialis (ECR) in the right hand wrist flexion movement; the coherence coefficients between C3 and ECR was greater than FCU in the right hand wrist extension movement. This analysis provides experimental basis to explore the information decoding of hand motion based on corticomuscular coherence (CMC).
Electroencephalography
;
Electromyography
;
Healthy Volunteers
;
Humans
;
Motor Cortex
;
physiology
;
Movement
;
Muscle, Skeletal
;
physiology
;
Range of Motion, Articular
;
Wrist
;
physiology
;
Wrist Joint
;
physiology
10.The evaluation of SCI by TMS-MEP and its forensic significance.
Lei YANG ; Xing-Ben LIU ; Rong-Ting ZHU ; Xiao-Ming XU ; Chuan-Fei ZHENG ; Yu-Xin ZHOU
Journal of Forensic Medicine 2013;29(3):172-175
OBJECTIVE:
To find an objective and accurate examination for evaluation of spinal cord injury (SCI) in forensic clinical medicine.
METHODS:
The onset latency of cortex, peak latency of N1, central motor conduction time (CMCT) and wave width of the abductor pollicis brevis and the anterior tibialis were calculated by transcranial magnetic stimulation-motor evoked potential (TMS-MEP). The data of 68 patients suffered from SCI including 23 cervical levels and 45 thoracolumbar levels were collected and compared with that of 30 normal controls.
RESULTS:
In experimental group, when the muscle strength of the abductor pollicis brevis or the anterior tibialis decreased or disappeared, the onset latency of cortex, the peak latency of N1, and CMCT prolonged and the wave width broadened. And these indexes of grade 2 and 3 muscle strength in experimental group were higher than that in the control group (P < 0.05).
CONCLUSION
The TMS-MEP can determine directly and objectively the motor functional status of pyramidal tract of spinal cord in order to provide more accurate and objective evidences in forensic medicine.
Adolescent
;
Adult
;
Case-Control Studies
;
Evoked Potentials, Motor/physiology*
;
Female
;
Forensic Medicine/methods*
;
Humans
;
Male
;
Middle Aged
;
Monitoring, Physiologic
;
Motor Cortex/physiology*
;
Muscle, Skeletal/physiology*
;
Neural Conduction/physiology*
;
Reaction Time/physiology*
;
Spinal Cord Injuries/physiopathology*
;
Transcranial Magnetic Stimulation
;
Young Adult

Result Analysis
Print
Save
E-mail