1.Impact of the microbiome on mosquito-borne diseases.
Huicheng SHI ; Xi YU ; Gong CHENG
Protein & Cell 2023;14(10):743-761
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Animals
;
Humans
;
Culicidae/microbiology*
;
Vector Borne Diseases
;
Gastrointestinal Microbiome
;
Wolbachia
2.Analysis of the impact of health management measures for entry personnel on imported Dengue fever in Guangdong Province, 2020-2022.
Xiao Hua TAN ; Ai Ping DENG ; Ying Tao ZHANG ; Min LUO ; Hui DENG ; Yu Wei YANG ; Jin Hua DUAN ; Zhi Qiang PENG ; Meng ZHANG
Chinese Journal of Epidemiology 2023;44(6):954-959
Objective: To explore the impact of health management measures for entry personnel (entry management measures) against COVID-19 on the epidemiological characteristics of imported Dengue fever in Guangdong Province from 2020 to 2022. Methods: Data of imported Dengue fever from January 1, 2016 to August 31, 2022, mosquito density surveillance from 2016 to 2021, and international airline passengers and Dengue fever annual reported cases from 2011 to 2021 in Guangdong were collected. Comparative analysis was conducted to explore changes in the epidemic characteristics of imported Dengue fever before the implementation of entry management measures (from January 1, 2016 to March 20, 2020) and after the implementation (from March 21, 2020 to August 31, 2022). Results: From March 21, 2020, to August 31, 2022, a total of 52 cases of imported Dengue fever cases were reported, with an imported risk intensity of 0.12, which were lower than those before implementation of entry management measures (1 828, 5.29). No significant differences were found in the characteristics of imported cases before and after implementation of entry management measures, including seasonality, sex, age, career, and imported countries (all P>0.05). 59.62% (31/52) of cases were found at the centralized isolation sites and 38.46% (20/52) at the entry ports. However, before implementation of entry management measures, 95.08% (1 738/1 828) of cases were found in hospitals. Among 51 cases who had provided entry dates, 82.35% (42/51) and 98.04% (50/51) of cases were found within seven days and fourteen days after entry, slightly higher than before implementation [(72.69%(362/498) and 97.59% (486/498)]. There was significant difference between the monthly mean values of Aedes mosquito larval density (Bretto index) from 2020 to 2021 and those from 2016 to 2019 (Z=2.83, P=0.005). There is a strong positive correlation between the annual international airline passengers volume in Guangdong from 2011 to 2021 and the annual imported Dengue fever cases (r=0.94, P<0.001), and a positive correlation also existed between the international passenger volume and the annual indigenous Dengue fever cases (r=0.72, P=0.013). Conclusions: In Guangdong, the entry management measures of centralized isolation for fourteen days after entry from abroad had been implemented, and most imported Dengue fever cases were found within fourteen days after entry. The risk of local transmission caused by imported cases has reduced significantly.
Animals
;
Humans
;
COVID-19
;
Aedes
;
Epidemics
;
China/epidemiology*
;
Dengue/epidemiology*
3.Flavivirus-infected hosts attract more mosquitoes to bite.
Hong ZHANG ; Xi YU ; Yibin ZHU ; Gong CHENG
Frontiers of Medicine 2023;17(2):355-357
Humans
;
Animals
;
Culicidae
;
Flavivirus
;
Cell Line
;
Spiramycin
4.Molecular detection and phylogenetic analysis of Wolbachia infection in common mosquito species in Henan Province.
Y LIU ; D WANG ; Z HE ; D QIAN ; Y LIU ; C YANG ; D LU ; H ZHANG
Chinese Journal of Schistosomiasis Control 2023;35(4):389-393
OBJECTIVE:
To investigate the infection and genotypes of Wolbachia in common mosquito species in Henan Province, so as to provide insights into management of mosquito-borne diseases.
METHODS:
Aedes, Culex and Anopheles samples were collected from cowsheds, sheepfolds and human houses in Puyang, Nanyang City and Xuchang cities of Henan Province from July to September, 2022, and the infection of Wolbachia was detected. The 16S rDNA and wsp genes of Wolbachia were amplified and sequenced. Sequence alignment was performed using the BLAST software, and the obtained 16S rDNA gene sequence was compared with the sequence of the 16S rDNA gene in GenBank database. In addition, the phylogenetic trees were created based on 16S rDNA and wsp gene sequences using the software MEGA 11.0.
RESULTS:
A total 506 female adult mosquitoes were collected from three sampling sites in Nanyang, Xuchang City and Puyang cities from July to September, 2022. The overall detection of Wolbachia was 45.1% (228/506) in mosquitoes, with a higher detection rate in A. albopictus than in Cx. pipiens pallens [97.9% (143/146) vs. 50.6% (85/168); χ2 = 88.064, P < 0.01]. The detection of Wolbachia in Cx. pipiens pallens was higher in Xuchang City (96.8%, 62/64) than in Nanyang (15.6%, 7/45) and Puyang cities (27.1%, 16/59) (χ2 = 89.950, P < 0.01). The homologies of obtained Wolbachia 16S rDNA and wsp gene sequences were 95.3% to 100.0% and 81.7% to 99.8%. Phylogenetic analysis based on wsp gene sequences showed Wolbachia supergroups A and B in mosquito samples, with wAlbA and wMors strains in supergroup A and wPip and wAlbB strains in supergroup B. Wolbachia strain wAlbB infection was detected in A. albopictus in Puyang and Nanyang Cities, while Wolbachia strain wPip infection was identified in A. albopictus in Xuchang City. Wolbachia strain wAlbA infection was detected in Cx. pipiens pallens sampled from three cities, and one Cx. pipiens pallens was found to be infected with Wolbachia strain wMors in Nanyang City.
CONCLUSIONS
Wolbachia infection is commonly prevalent in Ae. albopictus and Cx. pipiens pallens from Henan Province, and Wolbachia strains wAlbB and wAlbA are predominant in Ae. albopictus, while wPip strain is predominant in Cx. pipiens pallens. This is the first report to present Wolbachia wMors strain infection in Cx. pipiens pallens in Henan Province.
Animals
;
Humans
;
Phylogeny
;
Wolbachia/genetics*
;
Culex/genetics*
;
Aedes/genetics*
;
DNA, Ribosomal
5.Surveillance on dengue vector Aedes albopictus in Ningbo City in 2021.
Chinese Journal of Schistosomiasis Control 2023;35(4):379-382
OBJECTIVE:
To analyze the density, distribution and insecticide resistance of Aedes albopictus in Ningbo City in 2021, so as to provide insights into formulation of dengue fever control strategies.
METHODS:
Four administrative villages were randomly selected from each county (district) in Ningbo City from April to November, 2021, to investigate the indoor population density of Aedes larvae, and the Breteau index (BI) was calculated. The population density of adult mosquitoes was investigated in residential areas, parks/bamboo forests, waste tire stacking sites/waste stations/construction sites in each county (district). On June 2021, larvae of the natural strain A. albopictus were collected from epidemic sites of dengue fever in Ningbo City in 2018, and raised in laboratory. Then, larvae and female mosquitoes without blood feeding were selected for insecticide resistance bioassays, while insecticide-sensitive strains of A. albopictus served as controls. The resistance of A. albopictus larvae to deltamethrin, beta-cypermethrin, propoxur, temephos and dichlorvos using the impregnation method, and the medium lethal concentration (LC50) and resistance ratio (RR) were calculated. The resistance of adult A. albopictus to beta-cypermethrin, permethrin, deltamethrin, propoxur and malathion was determined using the tube bioassay, and the mosquito mortality was calculated.
RESULTS:
A total of 10 072 small water containers from 9 935 households were investigated in Ningbo City in 2021, and there were 1 276 containers with Aedes larvae detected, with an average BI of 12.89. Totally 1 422 mosquito nets were allocated and 954 female A. albopictus were captured, with an average net trapping index of 1.34 mosquitoes/(net·hour). Both larval and adult A. albopictus mosquitoes were found from April to November, and the density of larval A. albopictus peaked in September (BI = 21.21), while the density of adult A. albopictus peaked in August, with a net trapping index of 2.38 mosquitoes/(net·hour). The LC50 values of delta-methrin, beta-cypermethrin, propoxur, temephos and dichlorvos were 0.017 4, 0.000 9, 0.364 1, 0.038 1 mg/L and 0.001 6 mg/L against larvae of natural strains of A. albopicchus, with RRs of 49.66, 25.53, 9.65, 2.24 and 6.06, and the mortality rates of adult mosquitoes were 66.00% (66/100), 69.39% (68/98), 25.00% (25/100), 98.97% (96/97) and 100.00% (98/98) 24 hours post-treatment with 0.08% beta-cypermethrin, 0.03% deltamethrin, 0.4% permethrin, 0.05% propoxur, and 0.5% malathion for 24 h, respectively.
CONCLUSIONS
A. albopictus is widely distributed in Ningbo City, with a high population density and presents high-level resistance to common pyrethroid insecticides. The population density and insecticide resistance of A. albopictus requires to be reinforced.
Animals
;
Female
;
Malathion
;
Temefos
;
Aedes
;
Propoxur
;
Permethrin
;
Dichlorvos
;
Mosquito Vectors
;
Larva
;
Dengue/prevention & control*
6.Dual Effects of Light on Regulating Aedes aegypti Heat-Seeking Behavior.
Haonan ZHOU ; Kai SHI ; Fengming WU ; Bingcai WANG ; Jing LI ; Bowen DENG ; Chuan ZHOU
Neuroscience Bulletin 2022;38(11):1420-1424
7.Traditional medicinal plants for arthropod-borne diseases of five countries in Lancang-Mekong region:a review.
Er-Wei HAO ; An-Ran XIE ; Yan-Ting WEI ; Xiao-Lu CHEN ; Zheng-Cai DU ; Xiao-Tao HOU ; Jia-Gang DENG
China Journal of Chinese Materia Medica 2021;46(24):6303-6311
Arthropod-borne diseases, such as malaria and dengue fever, have frequently beset five countries(Cambodia, Vietnam, Laos, Myanmar, and Thailand) in the tropical rainy Lancang-Mekong region, which pose a huge threat to social production and daily life. As a resort to such diseases, chemical drugs risk the resistance in plasmodium, non-availability for dengue virus, and pollution to the environment. Traditional medicinal plants have the multi-component, multi-target, and multi-pathway characteristics, which are of great potential in drug development. Exploring potential medicinals for arthropod-borne diseases from traditional medicinal plants has become a hot spot. This study summarized the epidemiological background of arthropod-borne diseases in the Lancang-Mekong region and screened effective herbs from the 350 medicinal plants recorded in CHINA-ASEAN Traditional Medicine. Based on CNKI, VIP, and PubMed, the plants for malaria and dengue fever and those for killing and repelling mosquitoes were respectively sorted out. Their pharmacological effects and mechanisms were reviewed and the material basis was analyzed. The result is expected to serve as a reference for efficient utilization of medicinal resources, development of effective and safe drugs for malaria and dengue fever, and the further cooperation between China and the other five countries in the Lancang-Mekong region.
Animals
;
Culicidae
;
Malaria
;
Plants, Medicinal
;
Plasmodium
;
Thailand
8.Occupationally Acquired Plasmodium knowlesi Malaria in Brunei Darussalam
Gregory JN KOH ; Pg K ISMAIL ; David KOH
Safety and Health at Work 2019;10(1):122-124
Simian malaria is a zoonotic disease caused by Plasmodium knowlesi infection. The common natural reservoir of the parasite is the macaque monkey and the vector is the Anopheles mosquito. Human cases of P. knowlesi infection has been reported in all South East Asian countries in the last decade, and it is currently the most common type of malaria seen in Malaysia and Brunei. Between 2007–2017, 73 cases of P. knowlesi infection were notified and confirmed to the Ministry of Health in Brunei. Of these, 15 cases (21%) were documented as work-related, and 28 other cases (38%) were classified as probably related to work (due to incomplete history). The occupations of those with probable and confirmed work related infections were border patrol officers, Armed Forces and security personnel, Department of Forestry officers, boatmen and researchers. The remaining cases classified as most likely not related to work were possibly acquired via peri-domestic transmission. The risk of this zoonotic infection extends to tourists and overseas visitors who have to travel to the jungle in the course of their work. It can be minimised with the recommended use of prophylaxis for those going on duty into the jungles, application of mosquito/insect repellants, and use of repellant impregnated uniforms and bed nets in jungle camp sites.
Anopheles
;
Arm
;
Asian Continental Ancestry Group
;
Brunei
;
Culicidae
;
Forestry
;
Haplorhini
;
Humans
;
Macaca
;
Malaria
;
Malaysia
;
Occupations
;
Parasites
;
Plasmodium knowlesi
;
Plasmodium
;
Zoonoses
9.A Boy with Chronic Active EBV Infection Presented as Mosquito Bite Hypersensitivity Progressed to Fatal Hemophagocytic Lymphohistiocytosis due to NK Cell Neoplasm
Jin Ah LEE ; Seung Beom HAN ; Nack Gyun CHUNG ; Jin Han KANG ; Myungshin KIM ; Dae Chul JEONG
Clinical Pediatric Hematology-Oncology 2019;26(2):95-98
Chronic active Epstein-Barr virus (CAEBV) infection is characterized by recurrent infectious mononucleosis (IM)-like symptoms and an unusual pattern of anti-EBV antibodies. We report a boy with CAEBV who progressed to aggressive hemophagocytic lymphohistiocytosis (HLH) with NK cell neoplasm. A 19-year-old adolescent boy was admitted with fever and a history of recurrent IM-like symptoms following mosquito bites since the age of 6 years. His condition was diagnosed as CAEBV with atypical lymphocytosis and an unusual pattern of anti-EBV antibodies. His symptoms subsided during treatment with steroids and cyclosporine, although the EBV genome load kept increasing for several years. He was re-admitted after follow-up loss for 8 years, and his clinical and laboratory findings confirmed HLH and high titer of the EBV genome. Bone marrow analysis with flow cytometry showed hemophagocytosis with compatible NK cell neoplasm. He rapidly progressed to pulmonary infection and expired soon after. We conclude that hematopoietic stem cell transplantation may be a potential therapeutic modality for treating CAEBV before serious EBV manifestations.
Adolescent
;
Antibodies
;
Bone Marrow
;
Culicidae
;
Cyclosporine
;
Epstein-Barr Virus Infections
;
Fever
;
Flow Cytometry
;
Follow-Up Studies
;
Genome
;
Hematopoietic Stem Cell Transplantation
;
Herpesvirus 4, Human
;
Humans
;
Hypersensitivity
;
Infectious Mononucleosis
;
Killer Cells, Natural
;
Lymphocytosis
;
Lymphohistiocytosis, Hemophagocytic
;
Male
;
Steroids
;
Young Adult
10.Nature of Complex Network of Dengue Epidemic as a Scale-Free Network
Hafiz Abid Mahmood MALIK ; Faiza ABID ; Nadeem MAHMOOD ; Mohamed Ridza WAHIDDIN ; Asif MALIK
Healthcare Informatics Research 2019;25(3):182-192
OBJECTIVES: Dengue epidemic is a dynamic and complex phenomenon that has gained considerable attention due to its injurious effects. The focus of this study is to statically analyze the nature of the dengue epidemic network in terms of whether it follows the features of a scale-free network or a random network. METHODS: A multifarious network of Aedes aegypti is addressed keeping the viewpoint of a complex system and modelled as a network. The dengue network has been transformed into a one-mode network from a two-mode network by utilizing projection methods. Furthermore, three network features have been analyzed, the power-law, clustering coefficient, and network visualization. In addition, five methods have been applied to calculate the global clustering coefficient. RESULTS: It has been observed that dengue epidemic follows a power-law, with the value of its exponent γ = −2.1. The value of the clustering coefficient is high for dengue cases, as weight of links. The minimum method showed the highest value among the methods used to calculate the coefficient. Network visualization showed the main areas. Moreover, the dengue situation did not remain the same throughout the observed period. CONCLUSIONS: The results showed that the network topology exhibits the features of a scale-free network instead of a random network. Focal hubs are highlighted and the critical period is found. Outcomes are important for the researchers, health officials, and policy makers who deal with arbovirus epidemic diseases. Zika virus and Chikungunya virus can also be modelled and analyzed in this manner.
Administrative Personnel
;
Aedes
;
Arboviruses
;
Chikungunya virus
;
Critical Period (Psychology)
;
Dengue Virus
;
Dengue
;
Humans
;
Methods
;
Zika Virus

Result Analysis
Print
Save
E-mail